(V.V., M.E.M.)Continuous mechanical damage initiates the rhythmic emission of volatiles in lima bean (Phaseolus lunatus) leaves; the emission resembles that induced by herbivore damage. The effect of diurnal versus nocturnal damage on the initiation of plant defense responses was investigated using MecWorm, a robotic device designed to reproduce tissue damage caused by herbivore attack. Lima bean leaves that were damaged by MecWorm during the photophase emitted maximal levels of b-ocimene and (Z)-3-hexenyl acetate in the late photophase. Leaves damaged during the dark phase responded with the nocturnal emission of (Z)-3-hexenyl acetate, but with only low amounts of b-ocimene; this emission was followed by an emission burst directly after the onset of light. In the presence of 13 CO 2 , this light-dependent synthesis of b-ocimene resulted in incorporation of 75% to 85% of 13 C, demonstrating that biosynthesis of b-ocimene is almost exclusively fueled by the photosynthetic fixation of CO 2 along the plastidial 2-C-methyl-Derythritol 4-P pathway. Jasmonic acid (JA) accumulated locally in direct response to the damage and led to immediate up-regulation of the P. lunatus b-ocimene synthase gene (PlOS) independent of the phase, that is, light or dark. Nocturnal damage caused significantly higher concentrations of JA (approximately 2-3 times) along with enhanced expression levels of PlOS. Transgenic Arabidopsis thaliana transformed with PlOS promoterTb-glucuronidase fusion constructs confirmed expression of the enzyme at the wounded sites. In summary, damage-dependent JA levels directly control the expression level of PlOS, regardless of light or dark conditions, and photosynthesis is the major source for the early precursors of the 2-C-methyl-D-erythritol 4-P pathway.
BackgroundMaize (Zea mays L.) leaves damaged by lepidopteran herbivores emit a complex volatile blend that can attract natural enemies of the herbivores and may also have roles in direct defense and inter- or intra-plant signaling. The volatile blend is dominated by sesquiterpenes of which the majority is produced by two herbivore-induced terpene synthases, TPS10 and TPS23. However, little is known about the pattern of volatile emission within maize leaves.ResultsIn this study, we restricted herbivore feeding to small sections of the maize leaf with the aim of determining the patterns of volatile sesquiterpene emission throughout the damaged leaf and in neighboring leaves. Sesquiterpene volatiles were released at high rates from damaged leaves, but at much lower rates from neighboring leaves. Release was restricted to the site of damage or to leaf sections located apical to the damage, but was not seen in sections basal to the damage or on the other side of the midrib. The emission pattern correlated well with the transcript pattern of the respective sesquiterpene synthase genes, tps10 and tps23, implying that biosynthesis likely occurs at the site of emission. The concentrations of jasmonic acid and its leucine derivative were also elevated in terpene-emitting tissues suggesting a role for jasmonates in propagating the damage signal.ConclusionsIn contrast to other defense reactions which often occur systemically throughout the whole plant, herbivore-induced sesquiterpene production in maize is restricted to the wounding site and distal leaf parts. Since the signal mediating this reaction is directed to the leaf tip and cannot propagate parallel to the leaf axis, it is likely connected to the xylem. The increasing gradient of volatiles from the tip of the leaf towards the damage site might aid herbivore enemies in host or prey finding.
Alcohol dehydrogenases (ADH) are widely used to enantioselectively reduce ketones to chiral alcohols, but their application in industrial scale oxidations is rare. Reasons are the need for an NAD(P)+ cofactor regeneration system, often low performance in oxidative reactions and the limited substrate scope of ADHs. ADHA from Candida magnoliae DSMZ 70638 is identified to efficiently catalyze the regio‐selective hydroxy‐lactone oxidations to hydroxy‐lactones. Hydroxy‐lactones are common intermediates in industrial processes to cholesterol lowering (va)statin drugs. A biocatalytic aliphatic hydroxy‐lactone oxidation process is developed using pure oxygen as oxidant reaching volumetric productivities of up to 12 g L−1 h−1, product concentrations of almost 50 g L−1 and 95% reaction yield. For co‐factor recycling a previously engineered, water‐forming NAD(P)H‐oxidase from Streptococcus mutans is used. The process is scaled up to industrial pilot plant scale and it could be demonstrated that ADH catalyzed oxidations can be developed to efficient and safe processes. However, the ADHA wild‐type enzyme is not productive enough in chlorolactol oxidation. Therefore, enzyme engineering and multi‐parameter screening is successfully applied to optimize the enzyme for the target reaction. The optimized ADHA variant shows a 17‐fold higher oxidative activity, a 26°C increased stability and is applied to develop an efficient chlorolactol oxidation process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.