The iCLIP and eCLIP techniques facilitate the detection of protein–RNA interaction sites at high resolution, based on diagnostic events at crosslink sites. However, previous methods do not explicitly model the specifics of iCLIP and eCLIP truncation patterns and possible biases. We developed PureCLIP (https://github.com/skrakau/PureCLIP), a hidden Markov model based approach, which simultaneously performs peak-calling and individual crosslink site detection. It explicitly incorporates a non-specific background signal and, for the first time, non-specific sequence biases. On both simulated and real data, PureCLIP is more accurate in calling crosslink sites than other state-of-the-art methods and has a higher agreement across replicates.Electronic supplementary materialThe online version of this article (doi:10.1186/s13059-017-1364-2) contains supplementary material, which is available to authorized users.
AbstractiCLIP and eCLIP techniques facilitate the detection of protein-RNA interaction sites at high resolution, based on diagnostic events at crosslink sites. However, previous methods do not explicitly model the specifics of iCLIP and eCLIP truncation patterns and possible biases. We developed PureCLIP, a hidden Markov model based approach, which simultaneously performs peak calling and individual crosslink site detection. It explicitly incorporates RNA abundances and, for the first time, non-specific sequence biases. On both simulated and real data, PureCLIP is more accurate in calling crosslink sites than other state-of-the-art methods and has a higher agreement across replicates. Link: https://github.com/skrakau/PureCLIP.
The analysis of shotgun metagenomic data provides valuable insights into microbial communities, while allowing resolution at individual genome level. In absence of complete reference genomes, this requires the reconstruction of metagenome assembled genomes (MAGs) from sequencing reads. We present the nf-core/mag pipeline for metagenome assembly, binning and taxonomic classification. It can optionally combine short and long reads to increase assembly continuity and utilize sample-wise group-information for co-assembly and genome binning. The pipeline is easy to install-all dependencies are provided within containers-portable and reproducible. It is written in Nextflow and developed as part of the nf-core initiative for best-practice pipeline development. All codes are hosted on GitHub under the nf-core organization https://github.com/nf-core/mag and released under the MIT license.
The analysis of shotgun metagenomic data provides valuable insights into microbial communities, while allowing resolution at individual genome level. In absence of complete reference genomes, this requires the reconstruction of metagenome assembled genomes (MAGs) from sequencing reads. We present the nf-core/mag pipeline for metagenome assembly, binning and taxonomic classification. It can optionally combine short and long reads to increase assembly continuity and utilize sample-wise group-information for co-assembly and genome binning. The pipeline is easy to install - all dependencies are provided within containers -, portable and reproducible. It is written in Nextflow and developed as part of the nf-core initiative for best-practice pipeline development. All code is hosted on GitHub under the nf-core organization https://github.com/nf-core/mag and released under the MIT license.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.