Context Landscape and local habitat traits moderate wild bee communities. However, whether landscape effects differ between local habitat types is largely unknown. Objectives We explored the way that wild bee communities in three distinct habitats are shaped by landscape composition and the availability of flowering plants by evaluating divergences in response patterns between habitats. Methods In a large-scale monitoring project across 20 research areas, wild bee data were collected on three habitats: near-natural grassland, established flower plantings and residual habitats (e.g. field margins). Additionally, landscape composition was mapped around the research areas. Results Our monitoring produced a dataset of 27,650 bees belonging to 324 species. Bee communities on all three habitats reacted similarly to local flower availability. Intensively managed grassland in the surrounding landscape had an overall negative effect on the studied habitats. Other landscape variables produced diverging response patterns that were particularly pronounced during early and late season. Bee communities in near-natural grassland showed a strong positive response to ruderal areas. Flower plantings and residual habitats such as field margins showed a pronounced positive response to extensively managed grassland and woodland edges. Response patterns regarding bee abundance were consistent with those found for species richness. Conclusion We advise the consideration of local habitat type and seasonality when assessing the effect of landscape context on bee communities. A reduction in the intensity of grassland management enhances bee diversity in a broad range of habitats. Moreover, wild bee communities are promoted by habitat types such as ruderal areas or woodland edges.
Flower plantings can increase the abundance of bees and improve pollination services in the surrounding landscape. However, uncertainty remains as to whether flower plantings play a role in wild bee conservation. The aim of this study has been to examine the contribution of the composition and management of flower plantings to the attraction of bees, particularly of endangered species. In a large-scale monitoring project, wild bee data were collected on 60 flower plantings and 120 semi-natural reference plots in 20 study sites over 2 years. In total, we recorded 60,335 bees belonging to 351 species. In flower plantings, bee species richness and abundance were intricately linked to high plant richness and constant blooming throughout the season. In the first year of this study, a complimentary blooming phenology of annual and perennial plants resulted in a more constant bloom on flower plantings. In the second year, partial mowing of flower plantings mid-season enhanced floral resources during the late season. As a result, bee richness and abundance in flower plantings increased from the first to the second year. Nevertheless, the compositional heterogeneity of bees over all 20 sites in Germany did not increase from the first to the second year. We conclude that diverse and constant blooming throughout the season is the most important factor for promoting bees in flower plantings. To ensure sufficient beta diversity over a large spatial scale, we recommend the adjustment of seed mixtures according to the geographical region.
Background In flowering communities, plant species commonly share pollinators and therefore plant individuals receive heterospecific pollen (HP). However, the patterns of HP transfers can deviate from patterns of plant-pollinator visitations. Although flower-visitor interactions are known to be mediated by floral traits, e.g. floral size or nectar tube depth, the explanatory power of these traits for HP transfer patterns remains elusive. Here, we have explored pollen transfer patterns at three sites in Southern Germany on three dates (early, mid and late summer). At the plant level, we tested whether flower abundance and floral traits are correlated with HP reception and donation. At the community level, we determined whether flower and bee diversity are correlated with network modularity and whether floral traits explain the module affiliation of plant species. We collected the stigmas of flowering plant species, analysed HP and conspecific pollen (CP) loads and measured floral traits, flower and bee diversity. Results Our results show that the degree and intensity of HP reception or donation at the plant level do not correlate with floral traits, whereas at the community level, the module affiliation of who is sharing pollen with whom is well-explained by floral traits. Additionally, variation in network modularity between communities is better explained by plant diversity and abundance than by bee diversity and abundance. Conclusions Overall, our results indicate that floral traits that are known to mediate flower-visitor interactions can improve our understanding of qualitative HP transfer but only provide limited information about the quantity of HP transfer, which more probably depends on other floral traits, flower-visitor identity or community properties.
The availability of nesting resources influences the persistence and survival of bee communities. Although a positive effect of artificial nesting structures has frequently been shown for aboveground cavity-nesting wild bees, studies on below ground-nesting bees are rare. Artificial nesting hills designed to provide nesting habitats for ground-nesting bees were therefore established within the BienABest project in 20 regions across Germany. Wild bee communities were monitored for two consecutive years, accompanied by recordings of landscape and abiotic nest site variables. Bee activity and species richness increased from the first to the second year after establishment; this was particularly pronounced in landscapes with a low cover of semi-natural habitat. The nesting hills were successively colonized, indicating that they should exist for many years, thereby promoting a species-rich bee community. We recommend the construction of nesting hills on sun-exposed sites with a high thermal gain of the substrate because the bees prefer south-facing sites with high soil temperatures. Although the soil composition of the nesting hills plays a minor role, we suggest using local soil to match the needs of the local bee community. We conclude that artificial nesting structures for ground-nesting bees act as a valuable nesting resource for various bee species, particularly in highly degraded landscapes. We offer a construction and maintenance guide for the successful establishment of nesting hills for bee conservation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.