Odontoblast terminal differentiation occurs according to a tooth-specific pattern and implies both temporospatially regulated epigenetic signaling and the expression of specific competence. Differentiation of odontoblasts (withdrawal from the cell cycle, cytological polarization, and secretion of predentin/dentin) is controlled by the inner dental epithelium, and the basement membrane (BM) plays a major role both as a substrate and as a reservoir of paracrine molecules. Cytological differentiation implies changes in the organization of the cytoskeleton and is controlled by cytoskeleton-plasma membrane-extracellular matrix interactions. Fibronectin is re-distributed during odontoblast polarization and interacts with cell-surface molecules. A non-integrin 165-kDa fibronectin-binding protein, transiently expressed by odontoblasts, is involved in microfilament reorganization. Growth factors (TGF beta 1, 2, 3/BMP2, 4, and 6), expressed in tooth germs, signal differentiation. Systemically derived molecules (IGF1) may also intervene. IGF1 stimulates cytological but not functional differentiation of odontoblasts: The two events can thus be separated. Immobilized TGF beta 1 (combined with heparin) induced odontoblast differentiation. Only immobilized TGF beta 1 and 3 or a combination of FGF1 and TGF beta 1 stimulated the differentiation of functional odontoblasts over extended areas and allowed for maintenance of gradients of differentiation. Presentation of active molecules in vitro appeared to be of major importance; the BM should fulfill this role in vivo by immobilizing and spatially presenting TGF beta s. Attempts are being made to investigate the mechanisms which spatially control the initiation of odontoblast differentiation and those which regulate its propagation. Analysis of molar development suggested that odontoblast differentiation and crown morphogenesis are interdependent, although the possibility of co-regulation requires further investigation.
Recent advances in our understanding of the molecular pathways that control the link of inflammation with organ fibrosis and autoimmune diseases point to the epithelial to mesenchymal transition (EMT) as the common association in the progression of these diseases characterized by an intense inflammatory response. EMT, a process in which epithelial cells are gradually transformed to mesenchymal cells, is a major contributor to the pathogenesis of fibrosis. Importantly, the chronic inflammatory microenvironment has emerged as a decisive factor in the induction of pathological EMT. Transforming growth factor-β (TGF-β), a multifunctional cytokine, plays a crucial role in the induction of fibrosis, often associated with chronic phases of inflammatory diseases, contributing to marked fibrotic changes that severely impair normal tissue architecture and function. The understanding of molecular mechanisms underlying EMT-dependent fibrosis has both a basic and a translational relevance, since it may be useful to design therapies aimed at counteracting organ deterioration and failure. To this end, we reviewed the recent literature to better elucidate the molecular response to inflammatory/fibrogenic signals in autoimmune diseases in order to further the specific regulation of EMT-dependent fibrosis in more targeted therapies.
Modulation of host cell apoptosis has been observed in many bacterial, protozoal, and viral infections. The aim of this work was to investigate the effect of viscerotropic Leishmania (L.) infantum infection on actinomycin D-induced apoptosis of the human monocytic cell line U-937. Cells were infected with L. infantum promastigotes or treated with the surface molecule lipophosphoglycan (LPG) or with parasite-free supernatant of Leishmania culture medium and submitted to action of actinomycin D as the apoptosis-inducing agent. Actinomycin D-induced apoptosis in U-937 cells was inhibited in the presence of both viable L. infantum promastigotes and soluble factors contained in Leishmania culture medium or purified LPG. Leishmania infantum affected the survival of U-937 cells via a mechanism involving inhibition of caspase-3 activation. Furthermore, protein kinase C delta (PKC delta) cleavage was increased in actinomycin D-treated U-937 cells and was inhibited by the addition of LPG. Thus, inhibition of the PKC-mediated pathways by LPG can be implicated in the enhanced survival of the parasites. These results support the claim that promastigotes of L. infantum, as well as its surface molecule, LPG, which is in part released in the culture medium, inhibit macrophage apoptosis, thus allowing intracellular parasite survival and replication.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.