In monocotyledonous plants, the process of seed development involves the deposition of reserves in the starchy endosperm and development of the embryo and aleurone layer. The final stages of seed development are accompanied by an increase in desiccation tolerance and drying out of the mature seed. We have used two-dimensional gel electrophoresis for a time-resolved study of the changes in proteins that occur during seed development in barley (Hordeum vulgare). About 1,000 low-salt extractable protein spots could be resolved on the two-dimensional gels. Protein spots were divided into six categories according to the timing of appearance or disappearance during the 5-week period of comparison. Nineteen different proteins or protein fragments in 36 selected spots were identified by matrix-assisted laser-desorption ionization time of flight mass spectrometry (MS) or nano-electrospray tandem MS/MS. Some proteins were present throughout development (for example, cytosolic malate dehydrogenase), whereas others were associated with the early grain filling (ascorbate peroxidase) or desiccation (Cor14b) stages. Most noticeably, the development process is characterized by an accumulation of low-M r ␣-amylase/trypsin inhibitors, serine protease inhibitors, and enzymes involved in protection against oxidative stress. We present examples of proteins not previously experimentally observed, differential extractability of thiol-bound proteins, and possible allele-specific spot variation. Our results both confirm and expand on knowledge gained from previous analyses of individual proteins involved in grain filling and maturation.
Several barley (Hordeum vulgare) cultivars are used in the production of malt for brewing. The malt quality depends on the cultivar, its growth and storage conditions, and the industrial process. To enhance studies on malt quality, we embarked on a proteome analysis approach for barley seeds and malt. The proteome analysis includes two-dimensional (2-D) gel electrophoresis, mass spectrometry, and bioinformatics for identification of selected proteins. This project initially focused on proteins in major spots in the neutral isoelectric point range (pI 4-7) including selected spots that differ between four barley cultivars. The excellent malting barley cultivar Barke was used as reference. Cultivar differences in the 2-D gel spot patterns are observed both at the seed and the malt level. In seed extracts one of the proteins causing variations has been identified as an alpha-amylase/trypsin inhibitor. In malt extracts multiple forms of the alpha-amylase isozyme 2 have been identified in varying cultivar characteristic spot patterns. The present identification of proteins in major spots from 2-D gels includes 27 different proteins from 42 spots from mature seed extract, while only three specific proteins were identified by analysing 13 different spots from the corresponding malt extract. It is suggested that post-translational processing causes the same protein to occur in different spots.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.