Heart rate variability (HRV), the variation of the period between consecutive heartbeats, is an established tool for assessing physiological indicators such as stress and fatigue. In non-clinical settings, HRV is often computed from signals acquired using wearable devices that are susceptible to strong artifacts. In EEG (electroencephalography) experiments, these devices must be synchronized with the EEG and typically provide intermittent interbeat interval information based on proprietary artifact-removal algorithms. This paper describes an automated algorithm that uses the output of an EEG sensor mounted on a subject’s chest to accurately detect interbeat intervals and to calculate time-varying metrics. The algorithm is designed for raw signals and is robust to artifacts, resulting in fine-grained capture of HRV that is synchronized with the EEG. An open-source MATLAB toolbox (EEG-Beats) is available to calculate interbeat intervals and many standard HRV time and frequency indicators. EEG-Beats is designed to run in a completely automated fashion on an entire study without manual intervention. The paper applies EEG-Beats to EKG signals measured with an EEG sensor in a large longitudinal study (17 subjects, 6 tasks, 854 datasets). The toolbox is available at https://github.com/VisLab/EEG-Beats.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.