Molecular recognition is a useful property shared by various molecules, such as antibodies, aptamers and molecularly imprinted polymers (MIPs). It allows these molecules to be potentially involved in many applications including biological and pharmaceutical research, diagnostics, theranostics, therapy and drug delivery. Antibodies, naturally produced by plasma cells, have been exploited for this purpose, but they present noticeable drawbacks, above all production cost and time. Therefore, several research studies for similar applications have been carried out about MIPs and the main studies are reported in this review. MIPs, indeed, are more versatile and cost-effective than conventional antibodies, but the lack of toxicity studies and their scarce use for practical applications, make it that further investigations on this kind of molecules need to be conducted.
Hydrogels are three-dimensional crosslinked structures with physicochemical properties similar to the extracellular matrix (ECM). By changing the hydrogel’s material type, crosslinking, molecular weight, chemical surface, and functionalization, it is possible to mimic the mechanical properties of native tissues. Hydrogels are currently used in the biomedical and pharmaceutical fields for drug delivery systems, wound dressings, tissue engineering, and contact lenses. Lately, research has been focused on hydrogels from natural sources. Polysaccharides have drawn attention in recent years as a promising material for biological applications, due to their biocompatibility, biodegradability, non-toxicity, and excellent mechanical properties. Polysaccharide-based hydrogels can be used as drug delivery systems for the efficient release of various types of cancer therapeutics, enhancing the therapeutic efficacy and minimizing potential side effects. This review summarizes hydrogels’ classification, properties, and synthesis methods. Furthermore, it also covers several important natural polysaccharides (chitosan, alginate, hyaluronic acid, cellulose, and carrageenan) widely used as hydrogels for drug delivery and, in particular, their application in cancer treatment.
BackgroundHepatitis C is a liver infection caused by hepatitis C virus. Its main complications are cirrhosis and liver cancer. According to the World Health Organization (WHO), more than 185 million people worldwide are infected with hepatitis C virus and, of these, 350,000 die every year. Due to the high disease prevalence and the existence of effective (and expensive) medical treatments able to dramatically change the prognosis, early detection programs can potentially prevent the development of serious chronic conditions, improve health, and save resources.ObjectiveTo summarize the available evidence on the cost-effectiveness of screening programs for hepatitis C.MethodsA literature search was performed on PubMed and Scopus search engines. Trip database was queried to identify reports produced by the major Health Technology Assessment (HTA) agencies. Three reviewers dealt with study selection and data extraction blindly.ResultsTen papers eventually met the inclusion criteria. In studies focusing on asymptomatic cohorts of individuals at general risk the cost/quality adjusted life year of screening programs ranged between US $4,200 and $50,000/quality adjusted life year gained, while in those focusing on specific risk factors the incremental cost-effectiveness ratio ranged between $848 and $128,424/quality adjusted life year gained. Age of the target population and disease prevalence were the main cost-effectiveness drivers.ConclusionOur results suggest that, especially in the long run, screening programs represent a cost-effective strategy for the management of hepatitis C.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.