The striatum is involved in the control of appetitively motivated behavior. We found previously that tonically active neurons (TANs) in the monkey striatum show discriminative responses to different stimuli that are appetitive or aversive. However, these differential responses may reflect the sensory qualities of the stimulus rather than its motivational value. In the present study, we sought to define more precisely the relationship between the particular aspect of the response of TANs and the motivational value of stimuli. For this purpose, three monkeys were presented with two types of aversive stimuli (loud sound and air puff) and one appetitive stimulus (fruit juice). In most instances, the TAN responses to the loud sound and the air puff were similar, in terms of response pattern and duration, whereas responses to the liquid reward showed distinct features. Using classical appetitive conditioning, we reversed the motivational value of a stimulus so that a previously aversive stimulus was now associatively paired with a reward and found that this manipulation selectively modifies the expression of TAN responses to the stimulus. These data indicate that the characteristics of neuronal responses undergo modifications when the valence of the stimulus is changed from aversive to appetitive during associative learning, suggesting that TANs may contribute to a form of stimulus encoding that is dependent on motivational attributes. The adaptation of TAN responses such as observed in the present study likewise reflects a neuronal system that adjusts to the motivational information about environmental events.
Tonically active neurons (TANs) in the primate striatum are responsive to rewarding stimuli and they are thought to be involved in the storage of stimulus-reward associations or habits. However, it is unclear whether these neurons may signal the difference between the prediction of reward and its actual outcome as a possible neuronal correlate of reward prediction errors at the striatal level. To address this question, we studied the activity of TANs from three monkeys trained in a classical conditioning task in which a liquid reward was preceded by a visual stimulus and reward probability was systematically varied between blocks of trials. The monkeys' ability to discriminate the conditions according to probability was assessed by monitoring their mouth movements during the stimulus-reward interval. We found that the typical TAN pause responses to the delivery of reward were markedly enhanced as the probability of reward decreased, whereas responses to the predictive stimulus were somewhat stronger for high reward probability. In addition, TAN responses to the omission of reward consisted of either decreases or increases in activity that became stronger with increasing reward probability. It therefore appears that one group of neurons differentially responded to reward delivery and reward omission with changes in activity into opposite directions, while another group responded in the same direction. These data indicate that only a subset of TANs could detect the extent to which reward occurs differently than predicted, thus contributing to the encoding of positive and negative reward prediction errors that is relevant to reinforcement learning.
The detection of differences between predictions and actual outcomes is important for associative learning and for selecting actions according to their potential future reward. There are reports that tonically active neurons (TANs) in the primate striatum may carry information about errors in the prediction of rewards. However, this property seems to be expressed in classical conditioning tasks but not during performance of an instrumental task. To address this issue, we recorded the activity of TANs in the putamen of two monkeys performing an instrumental task in which probabilistic rewarding outcomes were contingent on an action in block-design experiments. Behavioral evidence suggests that animals adjusted their performance according to the level of probability for reward on each trial block. We found that the TAN response to reward was stronger as the reward probability decreased; this effect was especially prominent on the late component of the pause-rebound pattern of typical response seen in these neurons. The responsiveness to reward omission was also increased with increasing reward probability, whereas there were no detectable effects on responses to the stimulus that triggered the movement. Overall, the modulation of TAN responses by reward probability appeared relatively weak compared with that observed previously in a probabilistic classical conditioning task using the same block design. These data indicate that instrumental conditioning was less effective at demonstrating prediction error signaling in TANs. We conclude that the sensitivity of the TAN system to reward probability depends on the specific learning situation in which animals experienced the stimulus-reward associations.
Tonically active neurons (TANs) in the monkey striatum are involved in detecting motivationally relevant stimuli. We recently provided evidence that the timing of conditioned stimuli strongly influences the responsiveness of TANs, the source of which is likely to be the monkey's previous experience with particular temporal regularities in sequential task events. To extend these findings, we investigated the relationship of TAN responses to a primary liquid reward, the timing of which is more or less predictable to the monkey either outside of a task or during instrumental task performance. Reward predictability was indexed by the timing characteristics of the mouth movements. The responsiveness of TANs to reward increased with the range and variability of time periods before reward, notably when the liquid was delivered outside of a task. A change in the temporal order of events in a task context produced an increase of response to reward, suggesting an influence of the predicted nature of the event in addition to its time of occurrence. By contrast, we observed no substantial changes in neuronal activity at the expected time of reward when this event failed to occur, suggesting that these neurons do not appear to carry information about an error in reward prediction. These results demonstrate that TANs constitute a neuronal system that is involved in detecting unpredicted reward events, irrespective of the specific behavioral situation in which such events occur. The responses influenced by stimulus prediction may constitute a neuronal basis for the notion that striatal processing is crucial for habit learning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with đź’™ for researchers
Part of the Research Solutions Family.