Atherosclerosis is a lipid-triggered chronic inflammatory condition of our arteries and the main underlying pathology of myocardial infarction and stroke. Pathogenesis is age-dependent, but the mechanistic links between disease progression, age, and atherogenic cytokines and chemokines are incompletely understood. Here, we studied the chemokine-like inflammatory cytokine macrophage migration inhibitory factor (MIF) in atherogenic Apoe−/− mice across different stages of aging and cholesterol-rich high-fat diet (HFD). MIF promotes atherosclerosis by mediating atherogenic monocyte and T-cell recruitment, amplifying lesional inflammation, and suppressing atheroprotective B-cell responses. However, age-related links between atherogenesis and MIF and its role in advanced atherosclerosis in aged mice have not been systematically explored. We compared effects of global Mif-gene deficiency in 30-, 42-, and 48-week-old Apoe−/− mice on HFD for 24, 36, or 42 weeks, respectively, and in 52-week-old mice on a 6-week HFD. While a regio-specific atheroprotective phenotype of Mif-deficiency was observed in the 30/24-week-old group, atheroprotection was not detected in the 48/42- and 52/6-week-old groups, suggesting that atheroprotection afforded by global Mif-gene deletion differs across aging stages and atherogenic diet duration. We identify a combination of mechanisms that could explain this phenotype: i) Mif-deficiency promotes lesional Trem2+ macrophage numbers in younger but not aged mice; ii) Mif-deficiency favors formation of lymphocyte-rich stage-I/II ATLOs in younger mice but ATLO numbers equalize with those in Apoe−/− controls in the older mice; and iii) plasma anti-oxLDL-IgM antibody levels are decreased in aged Mif-deficient mice. Of note, these three markers (Trem2+ macrophages, ATLOs, anti-oxLDL-IgM antibodies) have been previously linked to atheroprotection. Together, our study thus suggests that regio-specific atheroprotection due to global Mif-gene deficiency in atherogenic Apoe−/− mice is lost upon advanced aging and identifies mechanisms that could explain this phenotype shift. These observations may have implications for translational MIF- directed strategies.
Atherosclerosis is a chronic inflammatory condition of our arteries and the main underlying pathology of myocardial infarction and stroke. The pathogenesis is age-dependent, but the links between disease progression, age, and atherogenic AUTHOR CONTRIBUTIONSJürgen Bernhagen and Christine Krammer conceived and designed the study with help from Sarajo Mohanta,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.