Chemical surface characterization of biologically modified sol-gel derived silica is critical but somewhat limited. This work demonstrates the ability of x-ray photoelectron spectroscopy (XPS) to characterize the surface chemistry of peptide modified sol-gel thin films based on the example of four different free peptide-silanes, denoted RGD, NID, KDI ,and YIG. The N 1s and C 1s peaks were found to be good fingerprints of the peptides, whereas O 1s overlapped with the signal of substrate oxygen and, therefore, the O 1s peak was not informative in the case of the thin films. The C 1s peak was fitted and the contribution of the residual hydrocarbons was sorted out. The curve-fitting procedure of the C 1s peak accounted for the different chemical states of carbon atoms in the peptide structure. The curve-fitting procedure was validated by analyzing free peptides in the powder form and was then applied to the characterization of the peptide-modified thin films. The XPS measured ratio between nitrogen and carbon for the peptide thin film was similar to the corresponding value calculated from the peptide structures. Angle resolved XPS confirmed the surface nature of peptides in modified thin films. The coverage and thickness of the peptides on the thin film surface depended on the peptide sequence. The coverage was in the range of 10% of a monolayer, and the layer thickness varied from 10 to 30 A. We believe that the different thicknesses and surface coverage are due to the local structure of the peptides, with the RGD and NID peptides taking a globule conformation and the YIG and KDI peptides adopting a more linear structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.