Ageing results from complex genetically and epigenetically programmed processes that are elicited in part by noxious or stressful events that cause programmed cell death. Here, we report that administration of spermidine, a natural polyamine whose intracellular concentration declines during human ageing, markedly extended the lifespan of yeast, flies and worms, and human immune cells. In addition, spermidine administration potently inhibited oxidative stress in ageing mice. In ageing yeast, spermidine treatment triggered epigenetic deacetylation of histone H3 through inhibition of histone acetyltransferases (HAT), suppressing oxidative stress and necrosis. Conversely, depletion of endogenous polyamines led to hyperacetylation, generation of reactive oxygen species, early necrotic death and decreased lifespan. The altered acetylation status of the chromatin led to significant upregulation of various autophagy-related transcripts, triggering autophagy in yeast, flies, worms and human cells. Finally, we found that enhanced autophagy is crucial for polyamine-induced suppression of necrosis and enhanced longevity.
28Aging is associated with an increased risk of cardiovascular disease and death. Here we 29show that oral supplementation of the natural polyamine spermidine extends the lifespan of 30 mice and exerts cardioprotective effects, reducing cardiac hypertrophy and preserving 31 diastolic function in old mice. Spermidine feeding enhanced cardiac autophagy, mitophagy 32 and mitochondrial respiration, and it also improved the mechano-elastical properties of 33 cardiomyocytes in vivo, coinciding with increased titin phosphorylation and suppressed 34 subclinical inflammation. Spermidine feeding failed to provide cardioprotection in mice that 35 lack the autophagy-related protein Atg5 in cardiomyocytes. In Dahl salt-sensitive rats that 36 were fed a high-salt diet, a model for hypertension-induced congestive heart failure, 37 spermidine feeding reduced systemic blood pressure, increased titin phosphorylation and 38 prevented cardiac hypertrophy and a decline in diastolic function, thus delaying the 39 progression to heart failure. In humans, high levels of dietary spermidine, as assessed from 40 food questionnaires, correlated with reduced blood pressure and a lower incidence of 41 cardiovascular disease. Our results suggest a new and feasible strategy for the protection 42 from cardiovascular disease. 43Author's manuscript to Eisenberg et al.
Acetyl-coenzyme A (AcCoA) is a major integrator of the nutritional status at the crossroads of fat, sugar, and protein catabolism. Here we show that nutrient starvation causes rapid depletion of AcCoA. AcCoA depletion entailed the commensurate reduction in the overall acetylation of cytoplasmic proteins, as well as the induction of autophagy, a homeostatic process of self-digestion. Multiple distinct manipulations designed to increase or reduce cytosolic AcCoA led to the suppression or induction of autophagy, respectively, both in cultured human cells and in mice. Moreover, maintenance of high AcCoA levels inhibited maladaptive autophagy in a model of cardiac pressure overload. Depletion of AcCoA reduced the activity of the acetyltransferase EP300, and EP300 was required for the suppression of autophagy by high AcCoA levels. Altogether, our results indicate that cytosolic AcCoA functions as a central metabolic regulator of autophagy, thus delineating AcCoA-centered pharmacological strategies that allow for the therapeutic manipulation of autophagy.
The acetylase inhibitor spermidine and the sirtuin-1 activator resveratrol disrupt the antagonistic network of acetylases and deacetylases that regulate autophagy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.