This paper reports the effect of solvent evaporation temperature on spray-coated tin disulfide (SnS2) thin films from molecular ink. Thiourea and tin chloride were the key chemical reagents used for the synthesis of SnS2 transparent ink under atmospheric conditions. The structural and compositional properties of SnS2 thin films revealed formation of pristine hexagonal SnS2. The films are smooth, homogeneous resulting in band gaps ranging from 2 to 2.22 eV suited for a Cd-free alternative buffer layer for Cu-based multicomponent solar cells. Thermoelectric power measurement showed that tin disulfide films exhibit n-type conductivity. Activation energy estimated from temperature variation of electrical conductivity measurement varied from 40 to 90 mV. Our results suggest that ink-processed SnS2 can be used as a potential alternative for opto-electronic devices such as thin film solar cell and photodetector devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.