The catalytic performances of three organophosphonyl/arsonyl derivatives of POMs were evaluated for the epoxidation of limonene in acetonitrile, using aqueous H2O2 as the oxidant. All three W‐based POMs catalysts operated without any additional transition‐metal ions and displayed excellent conversion for limonene at temperatures varying from 4 to 50 °C. Furthermore, the use of B,α‐[NaHAsW9O33{P(O)R}2]3– (R = tBu, ‐CH2CH2CO2H) complexes led to the complete conversion of limonene to epoxylimonene at 4 °C. The selectivity of the reaction was modulated by varying the reaction solvent, and it was found that allylic reactions were favored in ethanol. The effect of the catalyst protonation was also investigated by DFT calculations, highlighting the role of protons in the epoxidation process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.