Neuropsychiatric disorders such as schizophrenia or autism spectrum disorder represent a leading and growing burden on worldwide mental health. Fundamental lack in understanding the underlying pathobiology compromises efficient drug development despite the immense medical need. So far, antipsychotic drugs reduce symptom severity and enhance quality of life, but there is no cure available. On the molecular level, schizophrenia and autism spectrum disorders correlate with compromised neuronal phenotypes. There is increasing evidence that aberrant neuroinflammatory responses of glial cells account for synaptic pathologies through deregulated communication and reciprocal modulation. Consequently, microglia and astrocytes emerge as central targets for anti-inflammatory treatment to preserve organization and homeostasis of the central nervous system. Studying the impact of neuroinflammation in the context of neuropsychiatric disorders is, however, limited by the lack of relevant human cellular test systems that are able to represent the dynamic cellular processes and molecular changes observed in human tissue. Today, patient-derived induced pluripotent stem cells offer the opportunity to study neuroinflammatory mechanisms in vitro that comprise the genetic background of affected patients. In this review, we summarize the major findings of iPSC-based microglia and astrocyte research in the context of neuropsychiatric diseases and highlight the benefit of 2D and 3D co-culture models for the generation of efficient in vitro models for target screening and drug development.
The examination of post-mortem brain tissue suggests synaptic loss as a central pathological hallmark of schizophrenia spectrum (SCZ), which is potentially related to activated microglia and increased inflammation. Induced pluripotent stem cells serve as a source for neurons and microglia-like cells to address neuron-microglia interactions. Here, we present a co-culture model of neurons and microglia, both of human origin, to show increased susceptibility of neurons to microglia-like cells derived from SCZ patients. Analysis of IBA-1 expression, NFκB signaling, transcription of inflammasome-related genes, and caspase-1 activation shows that enhanced, intrinsic inflammasome activation in patient-derived microglia exacerbates neuronal deficits such as synaptic loss in SCZ. Anti-inflammatory pretreatment of microglia with minocycline specifically rescued aberrant synapse loss in SCZ and reduced microglial activation. These findings open up possibilities for further research in larger cohorts, focused clinical work and longitudinal studies that could facilitate earlier therapeutic intervention.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.