In the present study, the efficiency of a wastewater treatment plant (WWTP) upgraded with a powdered activated carbon unit for the reduction of micropollutants and the related advantages for fish health have been analyzed by means of different biomarkers, i.e. histopathological investigations, analyses of glycogen content and stress proteins, as well as by chemical analyses in different matrices. Comparative analyses were conducted prior and subsequent to the installation of the additional purification unit. Chemical analyses revealed a significant reduction of several pharmaceuticals, including diclofenac, carbamazepine and metoprolol, in samples of effluent and surface water downstream of the WWTP after its upgrade. In addition, diminished concentrations of diclofenac and PFOS were detected in tissues of analyzed fish. Histopathological investigations of fish liver, gills, and kidney revealed improved tissue integrity in fish after improved wastewater treatment. In parallel, biochemical measurements of glycogen revealed increased energy resources in fish liver and, furthermore, hsp70 levels in livers of exposed rainbow trout and in kidneys of exposed brown trout were lower after than before the WWTP upgrade. In summary, additional treatment with powdered activated carbon led to a reduction of potentially hazardous chemicals in the effluent and the adjacent river and, consequently, to an improvement of fish health in the receiving water course.
Background: Wastewater treatment plants are known as major sources for the release of micropollutants and bacteria into surface waters. To reduce this contaminant and microbial input, new technologies for effluent treatment have become available. The present paper reports the chemical, microbiological, biochemical, and biological effects of upgrading a wastewater treatment plant (WWTP) with a powdered activated carbon stage in the catchment area of the Schussen River, the largest German tributary of Lake Constance. Data were obtained prior to and after the upgrade between 2011 and 2017. Results: After the upgrading, the release of antibiotic resistant and non-resistant bacteria, micropollutants, and their effect potentials was significantly lower in the effluent. In addition, in the Schussen River downstream of the wastewater treatment plant, reduced concentrations of micropollutants were accompanied by both a significantly improved health of fish and invertebrates, along with a better condition of the macrozoobenthic community. Conclusions: The present study clearly provides evidence for the causality between a WWTP upgrade by powdered activated carbon and ecosystem improvement and demonstrates the promptness of positive ecological changes in response to such action. The outcome of this study urgently advocates an investment in further wastewater treatment as a basis for decreasing the release of micropollutants and both resistant and non-resistant bacteria into receiving water bodies and, as a consequence, to sustainably protect river ecosystem health and drinking water resources for mankind in the future.
Background: In situ exposure of rainbow trout up-and downstream of differently equipped wastewater treatment plants (WWTPs) and subsequent analyses of micronuclei frequencies and hepatic EROD activities were used to evaluate the impact of the effluents on fish health. Two of the facilities (WWTPs A and B) were conventional treatment plants. WWTP C has been equipped with a powdered activated carbon stage. Here, analyses were conducted prior and subsequent to this upgrade. Results:Differences did not only occur when comparing conventional (WWTPs A, B and C prior to the upgrade) and advanced treatment (WWTP C after the upgrade), but also between the conventionally equipped WWTPs. There was no indication for genotoxic effects or pollution-related EROD induction in fish exposed at WWTP A. In contrast, trout exposed at WWTP B expressed strong reactions. However, here, adverse reactions were also observed in fish kept upstream. Similar observations were made for EROD activities in fish exposed at WWTP C prior to the upgrade, whereas genotoxic effects could only be seen in trout kept downstream of this effluent. Upgrading of WWTP C resulted in a significant reduction of both genotoxic effects and EROD levels. Conclusions:The results show financial investments in advanced wastewater treatment to be beneficial for aquatic ecosystems, especially when conventional technologies do not sufficiently remove pollutants. Yet, negative impacts of effluents on aquatic organisms can, under certain conditions, also be avoided by conventional treatment. Therefore, we recommend deciding on the necessity and the type of WWTP upgrading on a case-by-case basis. which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
Background: Allopathic medicine faces a daunting challenge of selecting the best applicants because of the very high applicant / matriculant ratio. The quality of graduates ultimately reflects the quality of medical practice. Alarming recent trends in physician burnout, misconduct and suicide raise questions of whether we are selecting the right candidates. The United States lags far behind the United Kingdom and Europe in the study of non-cognitive tests in medical school admissions. Although more recently, medical schools in both the United Kingdom, Europe and the United States have begun to use situational judgement tests such as CaSPER and the SJT, recently developed by the AAMC and that these tests are, in a sense non-cognitive in nature, direct personality tests per se have not been utilized. Although personality is one indelible component of the human condition, we have historically used, in the admissions process within the US, knowledge, reasoning and exam performance, all of which can be improved with practice.Methods: A popular personality measurement used over the past two decades within the US in business and industry, but not medical school has been the NEO-PI-R Test. This test has not been utilized in allopathic medicine probably because of the paucity of exploratory retrospective and validating prospective studies. The hypothesis which we tested was whether NEO-PI-R traits exhibit consistency between two institutions and whether their values show promise in predicting academic performance. Results: Our retrospective findings indicated both interinstitutional consistencies and both positive and negative predictive values for certain traits whose correlative strengths exceeded traditional premed metrics (MCAT, GPA, etc.) for early academic performance.Conclusions: Our exploratory studies should catalyze larger and more detailed confirmatory studies designed to validate the importance of personality traits not only in predicting early medical school performance but also later performance in one’s overall medical career.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.