Several fast-growing strains nodulating Vicia faba in Peru, Spain and Tunisia formed a cluster related to Rhizobium leguminosarum. The 16S rRNA gene sequences were identical to that of R. leguminosarum USDA 2370 T , whereas rpoB, recA and atpD gene sequences were phylogenetically distant, with sequence similarities of less than 96 %, 97 % and 94 %, respectively. DNA-DNA hybridization analysis showed a mean relatedness value of 43 % between strain FB206 T and R. leguminosarum USDA 2370 T . Phenotypic characteristics of the novel strains also differed from those of the closest related species of the genus Rhizobium. Therefore, based on genotypic and phenotypic data obtained in this study, we propose to classify this group of strains nodulating Vicia faba as a novel species of the genus Rhizobium named Rhizobium laguerreae sp. nov. The type strain is FB206 T (5LMG 27434 T 5CECT 8280 T ).
A collection of 200 bacterial isolates recovered from citrus plants (Citrus limon, Citrus sinensis, and Citrus reticulata), Medicago truncatula and Laurus nobilis, was established. In vitro screening indicated that 28 isolates exhibited an inhibitory activity against the vascular pathogens Phoma tracheiphila and Verticillium albo-atrum. Isolates were screened according to their hydrolytic activities, plant growth-promoting bacteria (PGPB) abilities, as well as for the presence of nonribosomal peptide synthetase (NRPS) genes responsible of the lipopeptide biosynthesis. The results were positive for 16 isolates which exhibited at least two PGPB activities and a single NRPS gene. Genetic diversity of the selected isolates was studied using random amplified polymorphic DNA (RAPD) and repetitive element PCR (REP) tools that showed clustering of strains into three major groups (I, II, and III) (i, ii, and iii), respectively. Clustering was further confirmed by the 16S rDNA sequencing that assigned nine isolates to Bacillus velezensis, four isolates to Bacillus methyltrophicus, one isolate to Bacillus amyloliquefaciens, and two isolates to Bacillus mojavensis. Organ-bacterial genotype interaction as well as positive correlation with NRPS genes are discussed.
A collection of 104 isolates from root-nodules of Vicia faba was submitted to 16S rRNA PCR-RFLP typing. A representative sample was further submitted to sequence analysis of 16S rRNA. Isolates were assigned to 12 genera. All the nodulating isolates (45 %) were closely related to Rhizobium leguminosarum USDA2370(T) (99.34 %). The remaining isolates, including potential human pathogens, failed to nodulate their original host. They were checked for presence of symbiotic genes, P-solubilization, phytohormone and siderophore production, and then tested for their growth promoting abilities. Results indicated that 9 strains could induce significant increase (41-71 %) in shoot dry yield of faba bean. A Pseudomonas strain was further assessed in on-farm trial in combination with a selected rhizobial strain. This work indicated that nodule-associated bacteria could be a valuable pool for selection of effective plant growth promoting isolates. Nevertheless, the possible involvement of nodules in increasing risks related to pathogenic bacteria should not be neglected and needs to be investigated further.
Three microbial strains isolated from common beans, 23C2T (Tunisia), Gr42 (Spain) and IE4868 (Mexico), which have been identified previously as representing a genomic group closely related to
Rhizobium gallicum
, are further studied here. Their 16S rRNA genes showed 98.5–99 % similarity with
Rhizobium loessense
CCBAU 7190BT,
R. gallicum
R602spT,
Rhizobium mongolense
USDA 1844T and
Rhizobium yanglingense
CCBAU 71623T. Phylogenetic analysis based on recA, atpD, dnaK and thrC sequences showed that the novel strains were closely related and could be distinguished from the four type strains of the closely related species. Strains 23C2T, Gr42 and IE4868 could be also differentiated from their closest phylogenetic neighbours by their phenotypic and physiological properties and their fatty acid contents. All three strains harboured symbiotic genes specific to biovar gallicum. Levels of DNA–DNA relatedness between strain 23C2T and the type strains of
R. loessense
,
R. mongolense
,
R. gallicum
and
R. yanglingense
ranged from 58.1 to 61.5 %. The DNA G+C content of the genomic DNA of strain 23C2T was 59.52 %. On the basis of these data, strains 23C2T, Gr42 and IE4868 were considered to represent a novel species of the genus
Rhizobium
for which the name Rhizobium azibense is proposed. Strain 23C2T ( = CCBAU 101087T = HAMBI3541T) was designated as the type strain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.