Salt impedes plant growth and yield. This study was conducted to explore the effect of plant growth stimulants (seaweed extract, humic acid) and potassium sulfate in alleviating salt stress in barley (Hordeum vulgare L.). Initially, 10 barley genotypes were germinated in a growth chamber at five salt levels (0, 0.5, 1.0, 1.5, and 2.0%). Increasing salt concentration reduced germination percent, the speed of germination, and seedling weight. One salt-tolerant genotype (Sharqiya Estate) and one salt-sensitive genotype (Red Sea) were selected and planted in greenhouse pots containing 2 kg of sand, then subjected to 10 and 15 dS m -1 salt levels using CaCl 2 .2H 2 O: NaCl (2:1) mixed with Hoagland solution. Four treatments consisting of (1) , and (4) potassium sulfate at 300 Kg ha -1 were applied to each genotype under both salt levels. Seaweed extract resulted in higher shoot dry weight in the salt-sensitive genotype under both salt levels and maintained a low Na + /K + ratio compared with humic acid and potassium sulfate. It also resulted in higher relative yield, relative water content, higher proline, and lower electrolyte leakage in the susceptible genotype at 10 dS m -1 , but the result was not different from humic acid and potassium sulfate treatments at 15 dS m -1 . Seaweed extract resulted in the highest catalase activity at 15 dS m -1 in both genotypes, with higher magnitude in the salt-tolerant genotype. These results suggest that seaweed extract has potential in improving barley growth under salt stress.
Chickpea yield is decreasing day by day due to drought stress, which could be an immense risk for future food security in developing countries. Management practices could be the most excellent approach to diminish loss due to this abiotic factor. The current research work was designed to explore the tolerance reaction of chickpea genotypes against management practices, through morphological and biochemical parameters and evaluate yield performance across drought prone location of Bangladesh. Four genotypes BD-6048, BD-6045, BD-6090, BD-6092 and eight management practices, e.g., severe water stress (SWS), i.e., without irrigation, 10 cm thick mulching with rice straw (MRS), 10 cm thick mulching with water hyacinth (MWH), organic amendment through compost (OAC) @ 3 t ha −1 , organic amendment through cow dung @ 5 t ha −1 (OACD), organic amendment through poultry manure @ 2 t ha −1 (OAPM), inorganic amendment through proline application (IAPA) as foliar spray and 16 h hydro-priming (HP). The study revealed that the genotypes BD-6048 showed excellent performance because of the highest chlorophyll, carotenoids, phosphorus, potassium, proline and protein content. The highest pod number plant −1 also increased seed yield in BD-6048. Considering management practices, IAPA increased relative water content, carotenoids, leaf phosphorus and potassium compared to other management practices and severe water stress. Finally, BD-6084 was selected as best genotype because of a significant increase in chlorophyll a and b, carotenoids, and relative water content with IAPA. Identified top performing genotypes can be used for releasing variety and cultivated for sustainable production in drought prone area of Bangladesh.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.