Vinyl acetate [VA (CH3COOC2H3)] is an important unsaturated and oxygenated volatile organic compound responsible for atmospheric pollution. In this work, possible reaction mechanisms for the degradation of OH-initiated atmospheric oxidation of VA are investigated. The potential energy surfaces (PESs) for the reaction of OH radical with VA in the presence of O2 and NO have been studied using the M06-2X/6-311++G(d,p) method. The initial addition reactions of more and less substituted ethylenic C-atoms of VA are treated separately, followed by a conventional transition state theory (TST) calculation for reaction rates. The direct H-abstraction mechanism and kinetics have also been studied. The initial OH addition occurs through a prereactive complex, and the calculated rate constants in the temperature range 250-350 K for both the addition reactions are found to have negative temperature dependence. The calculation indicates that the reaction proceeds predominantly via the addition of OH radical to the double bond rather than the direct abstraction of H-atoms in VA. IM1 [CH3C(O)O(•)CHCH2OH] and IM2 [CH3C(O)OCH(OH)(•)CH2], the OH adduct complexes formed initially, react with ubiquitous O2 followed by NO before their rearrangement. The formation of the prereactive complex plays an important role in reaction mechanism and kinetics. The calculated rate constant, k298K = 1.61 × 10(-11) cm(3) molecule(-1) s(-1), is well harmonized with the previous experimental data, k298K = (2.48 ± 0.61) × 10(-11) cm(3) molecule(-1) s(-1) (Blanco et al.) and k298K = (2.3 ± 0.3) × 10(-11) cm(3) molecule(-1) s(-1) (Picquet-Varrult et al.). Additionally, consistent and reliable enthalpies of formation at 298.15 K (ΔfH°298.15) have been computed for all the species involved in the title reaction using the composite CBS-QB3 method. The theoretical results confirm that the major products are formic acetic anhydride, acetic acid, and formaldehyde in the OH-initiated oxidation of VA in the presence of O2 and NO, which are in excellent agreement with the experimental findings.
The structures, vibrational frequencies, enthalpies of formation and dissociation energies of arsine, arsenic hydrides and their fluoro, chloro derivatives have been studied using density functional B3LYP/cc-pVDZ, ab-initio MP2/cc-pVDZ and composite CBS-QB3 and CBS-Q methods. Computed standard enthalpies of formation at 298 K by atomisation scheme are compared with reported values. Bond dissociation energies at 0 K are calculated for all possible thermal dissociation of the molecular species in gas phase, from which the energetically most favourable dissociation pathways are predicted. The calculated enthalpies of formation and bond dissociation energies are correlated with the nature of bonding in arsine and its fluoro, chloro derivatives. Energy barriers at 0 K are calculated and transition states are located for the molecular fragment elimination of the thermal dissociation reactions.
Density functional theory was applied to study the interaction of group IIb transition-metal cations (Zn(2+), Cd(2+), and Hg(2+)) with one and two fully or partially deprotonated 3-mercaptopropionic acid ligands. In this investigation, we determined the geometries of all possible complexes resulting from the coordination of the metal ions with the ligands at different binding sites selected on each ligand. The relative energies of the complexes, metal-ion affinities, free energies, and entropies were also determined. The natures of the bonds were critically analyzed by natural bond orbital (NBO) analysis and clarified further using the atoms-in-molecules (AIM) approach. The substantial influence of the solvent (water) polarization on the energetics, geometries, and bonding of the molecular complexes was also investigated by the conductor-like screening solvation model (COSMO). In an attempt to simulate the complexes in an aqueous environment, water molecules were added explicitly to complete the coordination sphere of the metal cations, and the corresponding metal-ion affinities were calculated to study the effect of microhydration.
The isomers of the carbonyl sulfide (OCS) molecule are investigated in detail at CCSD(T)/cc-pVTZ//MP2/6-311þþG(2d,2p) level of theory. One cyclic isomer was identified along with three different linear minima of the OCS molecule. Three interconversion transition states were also located between cyclic and linear forms of OCS. Among these four isomers, the singlet potential energy surface (PES) for the molecule-molecule reaction between the three most energetically favoured isomers of OCS and H 2 O has been explored theoretically at the CCSD(T)/ cc-pVTZ//MP2/6-311þþG(2d,2p) level. This singlet PES comprises of three paths. Path 1 is the reaction of linear OCS molecule with water producing the major product P1 (CO 2 þ H 2 S), minor product P2 (S þ HCOOH) and two isomers via 14 minima and 15 transition states. The Path 2 is an isomerization process in which cyclic isomer of OCS reacts with water molecule via another initial barrierless aduct producing five isomers of the OCS-H 2 O system through five interconversion transition states. The reaction of linear COS isomer with water is shown in Path 3. This path produces the radicals SH and COOH from another COS-H 2 O complex via a transition state. Among these three products, the product P1 is energetically most favoured. The overall exothermicity of the product channels for the formation of major product P1 on PES is calculated to be about 10.60 kcal/mol possessing initial high entrance barriers of 45.48 and 55.47 kcal/mol in two possible pathways. As the process is favoured thermodynamically but not kinetically, the reaction is expected to be very slow.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.