The kinetics of phase separation in aqueous two-phase systems have been investigated as a function of the physical properties of the system. Two distinct situations for the settling velocities were found, one in which the light, organic-rich (PEG) phase is continuous and the other in which the heavier, salt-rich (phosphate) phase is continuous. The settling rate of a particular system is a crucial parameter for equipment design, and it was studied as a function of measured viscosity and density of each of the phases as well as the interfacial tension between the phases. Interfacial tension increases with increasing tie line length. A correlation that describes the rate of phase separation was investigated. This correlation, which is a function of the system parameters mentioned above, described the behavior of the system successfully. Different values of the parameters in the correlation were fitted for bottom-phase-continuous and top-phase-continuous systems. These parameters showed that density and viscosity play a role in the rate of separation in both top continuous- and bottom continuous-phase regions but are more dominant in the continuous top-phase region. The composition of the two-phase system was characterized by the tie line length. The rate of separation increased with increasing tie line length in both cases but at a faster rate when the bottom (less viscous) phase was the continuous phase. These results show that working in a continuous bottom-phase region is advantageous to ensure fast separation.
This paper describes a new method for detecting phenols, by reaction with Gibbs reagent to form indophenols, followed by mass spectrometric detection. Unlike the standard Gibbs reaction, which uses a colorometric approach, the use of mass spectrometry allows for simultaneous detection of differently substituted phenols. The procedure is demonstrated to work for a large variety of phenols without para-substitution. With para-substituted phenols, Gibbs products are still often observed, but the specific product depends on the substituent. For para groups with high electronegativity, such as methoxy or halogens, the reaction proceeds by displacement of the substituent. For groups with lower electronegativity, such as amino or alkyl groups, Gibbs products are observed that retain the substituent, indicating that the reaction occurs at the ortho or meta position. In mixtures of phenols, the relative intensities of the Gibbs products are proportional to the relative concentrations, and concentrations as low as 1 μmol/L can be detected. The method is applied to the qualitative analysis of commercial liquid smoke, and it is found that hickory and mesquite flavors have significantly different phenolic composition.
The cytotoxic and antimicrobial activity of methanol crude extract and column fractions of the extract of the leaves of P. plebejum were examined by brine shrimp lethality bioassay and disc diffusion method respectively. The extracts showed significant cytotoxic as well as antimicrobial activities. Silica gel column chromatography of methanol extract of P. plebejum afforded a steroid. The structure was elucidated on the basis of spectral analysis, including 1 H NMR and 13 C NMR and also by comparing with data in the literature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.