Previous studies have described that tumor organoids can capture the diversity of defined human carcinoma types. Here, we describe conditions for long-term culture of human mucosal organoids. Using this protocol, a panel of 31 head and neck squamous cell carcinoma (HNSCC)-derived organoid lines was established. This panel recapitulates genetic and molecular characteristics previously described for HNSCC. Organoids retain their tumorigenic potential upon xenotransplantation. We observe differential responses to a panel of drugs including cisplatin, carboplatin, cetuximab, and radiotherapy in vitro. Additionally, drug screens reveal selective sensitivity to targeted drugs that are not normally used in the treatment of patients with HNSCC. These observations may inspire a personalized approach to the management of HNSCC and expand the repertoire of HNSCC drugs. SIGNIFICANCE: This work describes the culture of organoids derived from HNSCC and corresponding normal epithelium. These tumoroids recapitulate the disease genetically, histologically, and functionally. In vitro drug screening of tumoroids reveals responses to therapies both currently used in the treatment of HNSCC and those not (yet) used in clinical practice.
Patients diagnosed with head and neck squamous cell carcinoma (HNSCC) are currently treated with surgery and/or radio- and chemotherapy. Despite these therapeutic interventions, 40% of patients relapse, urging the need for more effective therapies. In photodynamic therapy (PDT), a light-activated photosensitizer produces reactive oxygen species that ultimately lead to cell death. Targeted PDT, using a photosensitizer conjugated to tumor-targeting molecules, has been explored as a more selective cancer therapy. Organoids are self-organizing three-dimensional structures that can be grown from both normal and tumor patient-material and have recently shown translational potential. Here, we explore the potential of a recently described HNSCC–organoid model to evaluate Epidermal Growth Factor Receptor (EGFR)-targeted PDT, through either antibody- or nanobody-photosensitizer conjugates. We find that EGFR expression levels differ between organoids derived from different donors, and recapitulate EGFR expression levels of patient material. EGFR expression levels were found to correlate with the response to EGFR-targeted PDT. Importantly, organoids grown from surrounding normal tissues showed lower EGFR expression levels than their tumor counterparts, and were not affected by the treatment. In general, nanobody-targeted PDT was more effective than antibody-targeted PDT. Taken together, patient-derived HNSCC organoids are a useful 3D model for testing in vitro targeted PDT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.