The degradation behavior of eight benzodiazepines (BZPs): alprazolam, etizolam, diazepam, triazolam, nitrazepam (NZP), flunitrazepam (FNZ), bromazepam, and lorazepam, in artificial gastric juice was monitored by a LC/photodiode array detector (PDA) to estimate their pharmacokinetics in the stomach. For drugs that were degradable, such physicochemical parameters as reaction rate constant were measured to evaluate the effect of storage conditions on drug degradability, such as whether the degradation proceeds faster by increasing storage temperature, or whether the degradation reaction is reversible by adjusting pH. As a result, it was confirmed that although the eight BZPs degraded in artificial gastric juice, most of them could be restored when pH was increased, and the restoration rates differed depending on the pH and the type of BZP. As for NZP, an Arrhenius plot was drawn to obtain the physicochemical parameters, such as activation energy and activation entropy involved in the degradation reaction, and the reaction kinetics was discussed. In addition, two substances were confirmed as the degradation products of NZP in artificial gastric juice: one was a reversible degradation product (A) (intermediate) and the other was an irreversible degradation product (B) (final degradation product). The intermediate was identified as 2-amino-N-(2-benzoyl-4-nitrophenyl)acetamide, and the final degradation product was 2-amino-5-nitrobenzophenone. Therefore, when detecting NZP in human stomach contents, such as during judicial dissection, it would be prudent to target NZP as well as the intermediate (A) and the final degradation product (B).
L-Phenylalanyl-Ψ[CS-N]-l-alanine (Phe-Ψ-Ala), a thiourea dipeptide, was evaluated as a probe for peptide transporter 1 (PEPT1). Uptake of Phe-Ψ-Ala in PEPT1-overexpressing HeLa cells was significantly higher than that in vector-transfected HeLa cells and the Km value was 275 ± 32 µM. The uptake was pH-dependent, being highest at pH 6.0, and was significantly decreased in the presence of PEPT1 inhibitors [glycylsarcosine (Gly-Sar), cephalexin, valaciclovir, glycylglycine, and glycylproline]. In metabolism assay using rat intestinal mucosa, rat hepatic microsomes, and human hepatocytes, the amount of Phe-Ψ-Ala was unchanged, whereas phenylalanylalanine was extensively decomposed. The clearance, distribution volume, and half-life of intravenously administered Phe-Ψ-Ala in rats were 0.151 ± 0.008 L/h/kg, 0.235 ± 0.012 L/kg, and 1.14 ± 0.07 h, respectively. The maximum plasma concentration of orally administered Phe-Ψ-Ala (2.31 ± 0.60 µg/mL) in the presence of Gly-Sar was significantly decreased compared with that in the absence of glycylsarcosine (3.74 ± 0.44 µg/mL), suggesting that the intestinal absorption of Phe-Ψ-Ala is mediated by intestinal PEPT1. In conclusion, our results indicate that Phe-Ψ-Ala is a high-affinity, metabolically stable, non-radioactive probe for PEPT1, and it should prove useful in studies of PEPT1, e.g., for predicting drug-drug interactions mediated by PEPT1 in vitro and in vivo.
In this study, we examined the stability of Artist, Ubretid, Cardenalin, J Zoloft, Nu-Lotan, Micardis and Renivace tablets after removal from the press through package (PTP). Stability information for these tablets after removal from PTP is insufficient, although these tablets are frequently in clinical use. Test formulations were stored for 3 and 6 months at room temperature and humidity without artificial control, under fluorescent light and exposed to the atmosphere. These stabilities were evaluated by visual inspection, residual rate, a hardness test and a dissolution test. The content of the unchanged drug in Nu-Lotan tablets was significantly decreased at the 3rd and 6th months. Moreover, the tendency of content decreasing in Cardenalin and Renivace tablets was observed at the 3rd and 6th months. Hardness change was observed in Ubretid tablets at the 6th month. A significant reduction in hardness and an appearance change at the 3rd and 6th months were observed in the Renivace tablets. Moreover, mean dissolution time (MDT) of these tablets was significantly shortened. The change in quality of tablets after removal from PTP could cause a change in the effects and pharmacokinetic profiles of these drugs. Therefore, it is considered that the stability information in the unpackaged state requires enhancement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.