This study aimed to evaluate the effects of food texture and viscosity on the swallowing function by measuring tongue pressure and performing a videofluorographic (VF) examination. Eleven normal adults were recruited for this study. Test foods with different consistencies and liquid contents, i.e., a half-solid nutrient made of 0.8 and 1.5% agar powder, syrup, and a liquid containing 40 wt/vol% barium sulfate, were swallowed, and the anterior (AT) and posterior tongue pressures (PT) and electromyographic (EMG) activity of the suprahyoid muscles were recorded, together with VF images. The timing of each event obtained from EMG, tongue pressure, and VF recordings was measured and then compared. We found that the AT and PT activity patterns were similar and showed a single peak. The peak, area, and time duration of all of the variables for AT and PT and EMG burst increased with increasing hardness of the bolus. The onset of the EMG burst always preceded those of the AT and PT activities, while there were no significant differences in peak and offset times among EMG burst, AT, and PT. Total swallowing time and oral ejection time were significantly longer during the swallowing of 1.5% agar than any other boluses, while pharyngeal transit time and clearance time were significantly longer during the swallowing of syrup, which was as hard as the liquid, but showed a higher viscosity than the liquid. The results suggested that the major effects of food hardness were to delay oral ejection time, which strongly delays total swallowing time. In addition, pharyngeal bolus transit is not dependent on the hardness of food but on its viscosity.
This study aimed to describe the electromyographic (EMG) activity patterns of the genioglossus (GG) and suprahyoid (SHy) muscles during swallowing. The effects of changes in food texture/consistency and head posture on transport of the swallowed bolus were also investigated. Participants were 10 normal adults. Test foods consisted of a liquid, a syrup, or 4 ml of paste made from 0.5% or 1.0% agar. Each food was swallowed with the head in one of three positions, and EMGs and videofluorographic (VF) images were recorded. Mean values of onset, peak, and offset times, peak amplitude, area, and duration of the EMG burst were measured. The total swallowing time, oral ejection time, pharyngeal transit time, clearance time, fauces transit time, and upper esophageal sphincter (UES) transit time were measured. The GG muscle burst patterns showed two peaks (GG1 and GG2) during each swallowing. The offset time and duration of the GG1 burst and the onset, peak, and offset times and duration of both the GG2 and SHy bursts were significantly affected by food texture. There were no significant differences in bolus transit time among the different experimental conditions. Regression analyses demonstrated significant linear relationships between the tongue tip touching the palate and the peak of the GG1 burst, between passage of the bolus tail at the fauces and offset of the GG1 burst, between passage of the bolus tail at the UES and peak of the GG2 burst, and between passage of the bolus tail at the UES and offset of the SHy burst. These results demonstrate that the duration, but not the amplitude, of tongue and suprahyoid muscle activity were increased with increasing hardness of food during swallowing and that the bolus transit time can be fixed within a certain range of physical food properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.