Embryonic development of multilineage hematopoiesis requires the precisely regulated expression of lineage-specific transcription factors, including AML-1 (encoded by Runx1; also known as CBFA-2 or PEBP-2alphaB). In vitro studies and findings in human diseases, including leukemias, myelodysplastic syndromes and familial platelet disorder with predisposition to acute myeloid leukemia (AML), suggest that AML-1 has a pivotal role in adult hematopoiesis. However, this role has not been fully uncovered in vivo because of the embryonic lethality of Runx1 knockout in mice. Here we assess the requirement of AML-1/Runx1 in adult hematopoiesis using an inducible gene-targeting method. In the absence of AML-1, hematopoietic progenitors were fully maintained with normal myeloid cell development. However, AML-1-deficient bone marrow showed inhibition of megakaryocytic maturation, increased hematopoietic progenitor cells and defective T- and B-lymphocyte development. AML-1 is thus required for maturation of megakaryocytes and differentiation of T and B cells, but not for maintenance of hematopoietic stem cells (HSCs) in adult hematopoiesis.
The Notch genes play a key role in cellular differentiation. The significance of Notch1 during thymocyte development is well characterized, but the function of Notch2 is poorly understood. Here we demonstrate that Notch2 but no other Notch family member is preferentially expressed in mature B cells and that conditionally targeted deletion of Notch2 results in the defect of marginal zone B (MZB) cells and their presumed precursors, CD1d(hi) fraction of type 2 transitional B cells. Among Notch target genes, the expression level of Deltex1 is prominent in MZB cells and strictly dependent on that of Notch2, suggesting that Deltex1 may play a role in MZB cell differentiation.
In the past 3 years, altered expression of the HEF1/CAS-L/ NEDD9 scaffolding protein has emerged as contributing to cancer metastasis in multiple cancer types. However, whereas some studies have identified elevated NEDD9 expression as prometastatic, other work has suggested a negative role in tumor progression. We here show that the Nedd9-null genetic background significantly limits mammary tumor initiation in the MMTV-polyoma virus middle T genetic model. Action of NEDD9 is tumor cell intrinsic, with immune cell infiltration, stroma, and angiogenesis unaffected. The majority of the late-appearing mammary tumors of MMTV-polyoma virus middle T;Nedd9 À/À mice are characterized by depressed activation of proteins including AKT, Src, FAK, and extracellular signal-regulated kinase, emphasizing an important role of NEDD9 as a scaffolding protein for these prooncogenic proteins. Analysis of cells derived from primary Nedd9 +/+ and Nedd9 À/À tumors showed persistently reduced FAK activation, attachment, and migration, consistent with a role for NEDD9 activation of FAK in promoting tumor aggressiveness. This study provides the first in vivo evidence of a role for NEDD9 in breast cancer progression and suggests that NEDD9 expression may provide a biomarker for tumor aggressiveness.
CasL/HEF1 belongs to the p130Cas family. It is tyrosine-phosphorylated following  1 integrin and/or T cell receptor stimulation and is thus considered to be important for immunological reactions. CasL has several structural motifs such as an SH3 domain and a substrate domain and interacts with many molecules through these motifs.
PIV LRTD with viral detection in lungs (proven/probable LRTD) was associated with worse outcomes than was PIV LRTD with viral detection in upper respiratory samples alone (possible LRTD). This new classification should impact clinical trial design and permit comparability of results among centers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.