Nanocomposite fibers of Bombyx mori silk and single wall carbon nanotubes (SWNT) were produced by the electrospinning process. Regenerated silk fibroin dissolved in a dispersion of carbon nanotubes in formic acid was electrospun into nanofibers. The morphology, structure, and mechanical properties of the electrospun nanofibers were examined by field emission environmental scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy, and microtensile testing. TEM of the reinforced fibers shows that the single wall carbon nanotubes are embedded in the fibers. The mechanical properties of the SWNT reinforced fiber show an increase in Young's modulus up to 460% in comparison with the un-reinforced aligned fiber, but at the expense of the strength and strain to failure.
A nanocomposite of silkworm silk and single wall carbon nanotubes (SWNT) was produced by the electrospinning process. Regenerated silk fibroin dissolved in a dispersion of carbon nanotubes in formic acid was electrospun and the morphological, chemical and mechanical properties of the electrospun nanofibers were examined. The mechanical properties of the SWNT reinforced fiber show increases in Young's modulus up to 460 % in comparison with the un-reinforced aligned fiber.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.