Astronauts experience osteoporosis‐like loss of bone mass because of microgravity conditions during space flight. To prevent bone loss, they need a riskless and antiresorptive drug. Melatonin is reported to suppress osteoclast function. However, no studies have examined the effects of melatonin on bone metabolism under microgravity conditions. We used goldfish scales as a bone model of coexisting osteoclasts and osteoblasts and demonstrated that mRNA expression level of acetylserotonin O‐methyltransferase, an enzyme essential for melatonin synthesis, decreased significantly under microgravity. During space flight, microgravity stimulated osteoclastic activity and significantly increased gene expression for osteoclast differentiation and activation. Melatonin treatment significantly stimulated Calcitonin (an osteoclast‐inhibiting hormone) mRNA expression and decreased the mRNA expression of receptor activator of nuclear factor κB ligand (a promoter of osteoclastogenesis), which coincided with suppressed gene expression levels for osteoclast functions. This is the first study to report the inhibitory effect of melatonin on osteoclastic activation by microgravity. We also observed a novel action pathway of melatonin on osteoclasts via an increase in CALCITONIN secretion. Melatonin could be the source of a potential novel drug to prevent bone loss during space flight.
If humans ever start to live permanently in space, assisted reproductive technology using preserved spermatozoa will be important for producing offspring; however, radiation on the International Space Station (ISS) is more than 100 times stronger than that on Earth, and irradiation causes DNA damage in cells and gametes.Here we examined the effect of space radiation on freeze-dried mouse spermatozoa held on the ISS for 9 mo at -95°C, with launch and recovery at room temperature. DNA damage to the spermatozoa and male pronuclei was slightly increased, but the fertilization and birth rates were similar to those of controls. Nextgeneration sequencing showed only minor genomic differences between offspring derived from space-preserved spermatozoa and controls, and all offspring grew to adulthood and had normal fertility. Thus, we demonstrate that although space radiation can damage sperm DNA, it does not affect the production of viable offspring after at least 9 mo of storage on the ISS.International Space Station | preservation | freeze-dry | spermatozoa | fertilization S ince the "space dog" Laika (Лайка) was first placed into orbit in 1957 (1), many humans and animals have been to space or stayed on the International Space Station (ISS) for more than 6 mo. In the future, humans likely will live on largescale space stations or in other space habitats for several years or even over many generations. At that time, assisted reproductive technology (ART) likely will be used to produce humans in space habitats, given that the use of ART by infertile couples has increased year by year and that ART can be performed with cryopreserved spermatozoa or embryos (2, 3). In a similar way, domestic animals likely will be generated by artificial insemination (AI) in space, because many domestic animals are already produced by AI using long-term cryopreserved spermatozoa (4). In addition, genetic diversity is very important for maintaining a species, especially in small colonies, and this could be achieved by cryopreserving a diverse range of gamete cells. The environment in space is very different from that on Earth, however, including high levels of space radiation and microgravity, and the effects of these factors on mammalian reproduction are largely unknown. Although with current technology, producing offspring in such an environment can be difficult or dangerous (5), the study of reproduction in space is a very important subject for our future.So far, the effects of microgravity on early development have been studied using sea urchins, fish, amphibians, and birds (6-12). These studies have concluded that microgravity does not prevent animal reproduction. However, because of the difficulty in maintaining mammals and performing experiments in space, studies of mammal reproduction in space have not progressed as well as in other animals, and only a few papers have been published (13-18). Those studies and our previous study (19) have suggested that mammalian reproduction in space under conditions of microgravity cannot be easil...
Strontium ranelate is known to reduce fracture risk in osteoporotic patients by stimulating bone formation and suppressing bone resorption. However, the mechanism by which strontium exerts this beneficial effect on bone is unclear. We examined whether or not the calcium-sensing receptor (CaR), which is activated by divalent cations including Sr (2+), is involved in this mechanism. Both strontium ranelate and strontium chloride dose-dependently stimulated phosphorylation of extracellular signal-regulated kinase (ERK) in Human Embryonic Kidney 293 cells transiently transfected with the human CaR. Strontium ranelate also dose- and time-dependently stimulated phosphorylation of ERK in mouse osteoblastic MC3T3-E1 cells expressing the CaR endogenously. Strontium ranelate increased mRNA expression of osteocalcin and bone morphogenetic protein-2 in MC3T3-E1 cells as well as mineralization and proliferation of the cells. Pretreatments of NPS2390, a CaR inhibitor, almost totally antagonized strontium ranelate-induced mineralization and proliferation of MC3T3-E1 cells. These findings indicate that strontium ranelate induces not only osteoblast proliferation but also its differentiation and mineralization by activating the CaR, and confirm that the therapeutic efficacy of strontium ranelate for osteoporosis may be partly mediated by the CaR.
We carried out a space experiment, denoted as Aniso Tubule, to examine the effects of microgravity on the growth anisotropy and cortical microtubule dynamics in Arabidopsis hypocotyls, using lines in which microtubules are visualized by labeling tubulin or microtubule-associated proteins (MAPs) with green fluorescent protein (GFP). In all lines, GFP-tubulin6 (TUB6)-, basic proline-rich protein1 (BPP1)-GFP-and spira1-like3 (SP1L3)-GFP-expressing using a constitutive promoter, and spiral2 (SPR2)-GFP-and GFP-65 kDa MAP-1 (MAP65-1)-expressing using a native promoter, the length of hypocotyls grown under microgravity conditions in space was longer than that grown at 1 g conditions on the ground. In contrast, the diameter of hypocotyls grown under microgravity conditions was smaller than that of the hypocotyls grown at 1 g. The percentage of cells with transverse microtubules was increased under microgravity conditions, irrespective of the lines. Also, the average angle of the microtubules with respect to the transverse cell axis was decreased in hypocotyls grown under microgravity conditions. When GFP fluorescence was quantified in hypocotyls of GFP-MAP65-1 and SPR2-GFP lines, microgravity increased the levels of MAP65-1, which appears to be involved in the maintenance of transverse microtubule orientation. However, the levels of SPR2 under microgravity conditions were comparable to those at 1 g. These results suggest that the microgravity-induced increase in the levels of MAP65-1 is involved in increase in the transverse microtubules, which may lead to modification of growth anisotropy, thereby developing longer and thinner hypocotyls under microgravity conditions in space.Abbreviations -BPP1, basic proline-rich protein1; CBEF, Cell Biology Experiment Facility; GFP, green fluorescent protein; ISS, International Space Station; MAP, microtubule-associated protein; MAP65-1, 65 kDa microtubule-associated protein-1; SP1L3, spira1-like3; SPR2, spiral2; TUB6, tubulin6.
Cortical microtubules are involved in plant resistance to hypergravity, but their roles in resistance to 1 g gravity are still uncertain. To clarify this point, we cultivated an Arabidopsis α-tubulin 6 mutant (tua6) in the Cell Biology Experiment Facility on the Kibo Module of the International Space Station, and analyzed growth and cell wall mechanical properties of inflorescences. Growth of inflorescence stems was stimulated under microgravity conditions, as compared with ground and on-orbit 1 g conditions. The stems were 10-45% longer and their growth rate 15-55% higher under microgravity conditions than those under both 1 g conditions. The degree of growth stimulation tended to be higher in the tua6 mutant than the wild-type Columbia. Under microgravity conditions, the cell wall extensibility in elongating regions of inflorescences was significantly higher than the controls, suggesting that growth stimulation was caused by cell wall modifications. No clear differences were detected in any growth or cell wall property between ground and on-orbit 1 g controls. These results support the hypothesis that cortical microtubules generally play an important role in plant resistance to the gravitational force.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.