Abstract-We demonstrate that the dynamic behavior of queue and average window is determined predominantly by the stability of TCP/RED, not by AIMD probing nor noise traffic. We develop a general multi-link multi-source model for TCP/RED and derive a local stability condition in the case of a single link with heterogeneous sources. We validate our model with simulations and illustrate the stability region of TCP/RED. These results suggest that TCP/RED becomes unstable when delay increases, or more strikingly, when link capacity increases. The analysis illustrates the difficulty of setting RED parameters to stabilize TCP: they can be tuned to improve stability, but only at the cost of large queues even when they are dynamically adjusted. Finally, we present a simple distributed congestion control algorithm that maintains stability for arbitrary network delay, capacity, load and topology.
In this paper we study stochastic dynamic games with many players; these are a fundamental model for a wide range of economic applications. The standard solution concept for such games is Markov perfect equilibrium (MPE), but it is well known that MPE computation becomes intractable as the number of players increases. We instead consider the notion of stationary equilibrium (SE), where players optimize assuming the empirical distribution of others' states remains constant at its long run average. We make two main contributions. First, we provide a rigorous justification for using SE. In particular, we provide a parsimonious collection of exogenous conditions over model primitives that guarantee existence of SE, and ensure that an appropriate approximation property to MPE holds, in a general model with possibly unbounded state spaces. Second, we draw a significant connection between the validity of SE, and market structure: under the same conditions that imply SE exist and approximates MPE well, the market becomes fragmented in the limit of many firms. To illustrate this connection, we study in detail a series of dynamic oligopoly examples. These examples show that our conditions enforce a form of "decreasing returns to larger states"; this yields fragmented industries in the limit. By contrast, violation of these conditions suggests "increasing returns to larger states" and potential market concentration. In that sense, our work uses a fully dynamic framework to also contribute to a longstanding issue in industrial organization: understanding the determinants of market structure in different industries. * The authors are grateful for helpful conversations with
Abstract. Ad-hoc localization in multihop setups is a vital component of numerous sensor network applications. Although considerable effort has been invested in the development of multihop localization protocols, to the best of our knowledge the sensitivity of localization to its different setup parameters (network density, ranging system measurement error and beacon density) that are usually known prior to deployment has not been systematically studied. In an effort to reveal the trends and to gain better understanding of the error behavior in various deployment patterns, in this paper we study the Cramer Rao Bound behavior in carefully controlled scenarios. This analysis has a dual purpose. First, to provide valuable design time suggestions by revealing the error trends associated with deployment and second to provide a benchmark for the performance evaluation of existing localization algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.