This paper deals with experimental and finite element analysis of the stretch flanging process using AA- 5052 sheets of 0.5 mm thick. A parametrical study has been done through finite element simulation to inspect the influence of procedural parametrical properties on maximum thinning (%) within the stretch flanging process. The influence of preliminary flange length of sheet metal blank, punch die clearance, and width was examined on the maximum thinning (%). An explicit dynamic finite element method was utilized using the finite element commercial package ABAQUS. Strain measurement was done after conducting stretch flanging tests. A Mesh convergence examination was carried out to ascertain the maximum percentage accuracy in FEM model. It is found through finite element simulation that the width of sheet metal blanks has a greater impact on the maximum percentage of thinning as compared to preliminary flange length, and clearance of the punch dies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.