Several human neuroimaging studies have reported activity in the precentral gyrus (PcG) ipsilateral to the side of hand movements. This activity has been interpreted as the part of the primary motor cortex (M1) that controls bilateral or ipsilateral hand movements. To better understand hand ipsilateral-PcG activity, we performed a functional MRI experiment in eight healthy right-handed adults. Behavioral tasks involved hand or lower face movements on each side or motor imagery of the same movements. Consistent with the known M1 organization, the hand contralateral-PcG activity was centered at the "hand-knob" portion of the PcG; face contralateral-PcG activity was localized ventrolateral to it. Hand ipsilateral-PcG activity was identified in most subjects. However, converging results indicated that this ipsilateral PcG activity was situated in Brodmann's area 6 in both hemispheres. The hand ipsilateral-PcG zones were active not only during hand movements but also face movements. Moreover, the hand ipsilateral-PcG zones revealed substantial imagery-related activity, which also failed to differentiate the hand and face. Statistical analyses confirmed poor effector selectivity of the hand ipsilateral PcG activity during both movement and imagery tasks. From these results, we conclude that the hand ipsilateral-PcG activity in healthy adults probably corresponds to a part of the ventral premotor cortex. In contrast, available evidence suggests that M1 contributes to controlling the ipsilateral hand in children and patients after stroke recovery. It appears that within the human PcG, there are two parallel systems potentially capable of controlling ipsilateral hand movements: ventral premotor cortex and M1. These two systems may be differentially influenced by developmental or pathologic changes.
The ability of light to cause pain is paradoxical. The retina detects light but is devoid of nociceptors while the trigeminal sensory ganglia (TG) contain nociceptors but not photoreceptors. Melanopsin-expressing intrinsically photosensitive retinal ganglion cells (ipRGCs) are thought to mediate light-induced pain but recent evidence raises the possibility of an alternative light responsive pathway independent of the retina and optic nerve. Here, we show that melanopsin is expressed in both human and mouse TG neurons. In mice, they represent 3% of small TG neurons that are preferentially localized in the ophthalmic branch of the trigeminal nerve and are likely nociceptive C fibers and high-threshold mechanoreceptor Aδ fibers based on a strong size-function association. These isolated neurons respond to blue light stimuli with a delayed onset and sustained firing, similar to the melanopsin-dependent intrinsic photosensitivity observed in ipRGCs. Mice with severe bilateral optic nerve crush exhibit no light-induced responses including behavioral light aversion until treated with nitroglycerin, an inducer of migraine in people and migraine-like symptoms in mice. With nitroglycerin, these same mice with optic nerve crush exhibit significant light aversion. Furthermore, this retained light aversion remains dependent on melanopsin-expressing neurons. Our results demonstrate a novel light-responsive neural function independent of the optic nerve that may originate in the peripheral nervous system to provide the first direct mechanism for an alternative light detection pathway that influences motivated behavior.
Pituitary adenylate cyclase activating polypeptide (PACAP, gene name Adcyap1) regulates a wide variety of neurological and physiological functions, including metabolism, cognition, and plays roles in of multiple forms of stress. Due to its preferential expression in nerve fibers, it has often been difficult to trace and identify the endogenous sources of the peptide in specific populations of neurons. Here, we introduce a transgenic mouse line that harbors in its genome a bacterial artificial chromosome containing an enhanced green fluorescent protein (EGFP) expression cassette inserted upstream of the PACAP ATG translation initiation codon. Analysis of expression in brain sections of these mice using a GFP antibody reveals EGFP expression in distinct neuronal perikarya and dendritic arbors in several major brain regions previously reported to express PACAP using a variety of approaches, including radioimmunoassay, in situ hybridization, and immunohistochemistry with and without colchicine. EGFP expression in neuronal perikarya was modulated in a manner similar to PACAP gene expression in motor neurons after peripheral axotomy in the ipsilateral facial motor nucleus in the brainstem, providing an example whereby the transgene undergoes proper regulation in vivo. These mice and the high-resolution map obtained are expected to be useful tools to understand anatomical patterns of PACAP expression and its plasticity in the mouse.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.