A simple high yielding process for the production of rhGH (recombinant human growth hormone) in the Pichia pastoris system is described. The approach adopted the addition of surfactants during fermentation along with methanol induction. A Pichia integrant harbouring multiple-copy, non-codon-optimized hGH showed poor expression in complex and defined media. Inclusion of the surfactants Tween 20 or Tween 80 during induction enhanced the expression levels significantly in shake flask studies. The combination of 2 litres of basal salt medium and Tween 20 in a bioreactor culminated in 3 x 10(4)-fold elevated expression of the protein (approximately 500 mg/l) as estimated by ELISA. SDS/PAGE and Western-blot analyses revealed that the Pichia-derived rhGH migrated as a single band with a molecular mass of approximately 22 kDa and had the same immunoreactivity as native commercial rhGH. Analysis of Pichia-derived purified rhGH and commercial rhGH on an Agilent 2100 Bioanalyzer revealed overlapping peaks displaying authentic N-terminal processing of Pichia-derived rhGH, which was further confirmed by N-terminal sequencing. In addition, matrix-assisted laser-desorption ionization-time of flight analysis of the protein confirmed its authenticity. These results indicate that the P. pastoris expression system can be effective in the production of rhGH at commercially relevant levels.
BackgroundThe green fluorescent protein has revolutionized many areas of cell biology and biotechnology since it is widely used in determining gene expression and for localization of protein expression. Expression of recombinant GFP in E. coli K12 host from pBAD24M-GFP construct upon arabinose induction was significantly lower than that seen in E. coli B cells with higher expression at 30°C as compared to 37°C in E. coli K12 hosts. Since OmpT levels are higher at 37°C than at 30°C, it prompted us to modify the OmpT proteolytic sites of GFP and examine such an effect on GFP expression and fluorescence. Upon modification of one of the two putative OmpT cleavage sites of GFP, we observed several folds enhanced fluorescence of GFP as compared to unmodified GFPuv (Wild Type-WT). The western blot studies of the WT and the SDM II GFP mutant using anti-GFP antibody showed prominent degradation of GFP with negligible degradation in case of SDM II GFP mutant while no such degradation of GFP was seen for both the clones when expressed in BL21 cells. The SDM II GFP mutant also showed enhanced GFP fluorescence in other E. coli K12 OmpT hosts like E. coli JM109 and LE 392 in comparison to WT GFPuv. Inclusion of an OmpT inhibitor, like zinc with WT GFP lysate expressed from an E. coli K12 host was found to reduce degradation of GFP fluorescence by two fold.ResultsWe describe the construction of two GFP variants with modified putative OmpT proteolytic sites by site directed mutagenesis (SDM). Such modified genes upon arabinose induction exhibited varied degrees of GFP fluorescence. While the mutation of K79G/R80A (SDM I) resulted in dramatic loss of fluorescence activity, the modification of K214A/R215A (SDM II) resulted in four fold enhanced fluorescence of GFP.ConclusionsThis is the first report on effect of OmpT protease site modification on GFP fluorescence. The wild type and the GFP variants showed similar growth profile in bioreactor studies with similar amounts of recombinant GFP expressed in the soluble fraction of the cell. Our observations on higher levels of fluorescence of SDM II GFP mutant over native GFPuv in an OmpT+ host like DH5α, JM109 and LE392 at 37°C reiterates the role played by host OmpT in determining differences in fluorescent property of the expressed GFP. Both the WT GFP and the SDM II GFP plasmids in E. coli BL21 cells showed similar expression levels and similar GFP fluorescent activity at 37°C. This result substantiates our hypothesis that OmpT protease could be a possible factor responsible for reducing the expression of GFP at 37°C for WT GFP clone in K12 hosts like DH5α, JM109, LE 392 since the levels of GFP expression of SDM II clone in such cells at 37°C is higher than that seen with WT GFP clone at the same temperature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.