Brewers’ spent grain (BSG) is a by-product generated from the beer manufacturing industry, which is extremely rich in protein and fiber. Here we use low cost BSG as the raw material for the production of a novel growth media, through a bioconversion process utilizing a food grade fungi to hydrolyze BSG. The novel fermentation media was tested on the yeast Rhodosporidium toruloides, a natural yeast producing carotenoid. The yeast growth was analysed using the growth curve and the production of intracellular fatty acids and carotenoids. Untargeted GCMS based metabolomics was used to analyse the constituents of the different growth media, followed by multivariate data analysis. Growth media prepared using fermented BSG was found to be able to support the growth in R. toruloides (21.4 mg/ml) in comparable levels to YPD media (24.7 mg/ml). Therefore, the fermented BSG media was able to fulfill the requirement as a nitrogen source for R. toruloides growth. This media was able to sustain normal metabolomics activity in yeast, as indicated by the level of fatty acid and carotenoid production. This can be explained by the fact that, in the fermented BSG media metabolites and amino acids were found to be higher than in the unfermented media, and close to the levels in YPD media. Taken together, our study provided evidence of a growth media for yeast using BSG. This should have potential in replacing components in the current yeast culture media in a sustainable and cost effective manner.
BACKGROUND: Soybean residue (okara) is an agricultural by-product, which is rich in protein and fiber. This study evaluated a novel sequential process which combined fungal pretreatment (F) and twin screw extruder (E), to hydrolyze okara. The sequence of the pretreatment steps, and extruder at screw speeds 200 rpm (200) or 600 rpm (600), were tested. Next, soluble nutrients were extracted to create Fokara, EFokara200, EFokara600, FEokara200 and FEokara600 okara media. RESULTS: All the prepared okara media could support the growth and carotenoid production by the yeast Rhodosporidium toruloides. This suggested that okara proteins and polysaccharides were successfully hydrolyzed by extrusion and fungal pretreatment, into soluble nutrients. Rhodosporidium toruloides accumulated the highest biomass of 23.7 mg mL −1 dry cell weight (DCW), when grown on FEokara600 media. This was higher as compared to commercial YPG (yeast extract-peptone-glycerol) media (18.7 mg mL −1 DCW). However, R. toruloides accumulated the highest carotenoid production of 13.2 g mL −1 when grown on EFokara200 media as the nutrient source. This was comparable to carotenoid production of 13.1 g mL −1 when R. toruloides was grown on YPG media. CONCLUSION: Extrusion in combination with fungal pretreatment, is a low cost process, to hydrolyze and re-use okara, for carotenoid production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.