This numerical study considers the mixed convection, heat transfer and the entropy generation within a square cavity partially heated from below with moving cooled vertical sidewalls. All the other horizontal sides of the cavity are assumed adiabatic. The governing equations, in stream function–vorticity form, are discretized and solved using the finite difference method. Numerical simulations are carried out, by varying the Richardson number, to show the impact of the Prandtl number on the thermal, flow fields, and more particularly on the entropy generation. Three working fluid, generally used in practice, namely mercury (Pr = 0.0251), air (Pr = 0.7296) and water (Pr = 6.263) are investigated and compared. Predicted streamlines, isotherms, entropy generation, as well as average Nusselt numbers are presented. The obtained results reveal that the impact of the Prandtl number is relatively significant both on the heat transfer performance and on the entropy generation. The average Nusselt number increase with increasing Prandtl number. Its value varies thereabouts from 3.7 to 3.8 for mercury, from 5.5 to 13 for air and, from 12.5 to 15 for water. In addition, it is found that the total average entropy generation is significantly higher in the case of mercury (Pr«1) and water (Pr»1) than in the case of air (Pr~1). Its value varies approximately from 700 to 1100 W/m3 K for mercury, from 200 to 500 W/m3 K for water and, from 0.03 to 5 W/m3 K for air.
The objective of the present study is to analyze the laminar mixed convection in a square cavity with moving cooled vertical sidewalls. A constant flux heat source with relative length l is placed in the center of the lower wall while all the other horizontal sides of the cavity are considered adiabatic. The numerical method is based on a finite difference technique where the spatial partial derivatives appearing in the governing equations are discretized using a high order scheme, and time advance is dealt with by a fourth order Runge Kutta method. The Richardson number (Ri), which represents the relative importance of the natural and forced convection, is chosen as the bifurcation parameter. The effect of this non-dimensional number on the behavior of the fluid flow and the heat transfer is analyzed. Although the geometry and boundary conditions concerning the velocity and the temperature are symmetrical with respect to the vertical axis passing through the center of the cavity, the results show the existence of symmetric and asymmetric flow structures, varying according to the considered value of the Richardson number.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.