Emergence of Dengue as one of the deadliest viral diseases prompts the need for development of effective therapeutic agents. Dengue virus (DV) exists in four different serotypes and infection caused by one serotype predisposes its host to another DV serotype heterotypic re-infection. We undertook virtual ligand screening (VLS) to filter compounds against DV that may inhibit inclusively all of its serotypes. Conserved non-structural DV protein targets such as NS1, NS3/NS2B and NS5, which play crucial role in viral replication, infection cycle and host interaction, were selected for screening of vital antiviral drug leads. A dataset of plant based natural antiviral derivatives was developed. Molecular docking was performed to estimate the spatial affinity of target compounds for the active sites of DV鈥檚 NS1, NS3/NS2B and NS5 proteins. The drug likeliness of the screened compounds was followed by ADMET analysis whereas the binding behaviors were聽further elucidated through molecular dynamics (MD) simulation experiments. VLS screened three potential compounds including Canthin-6-one 9-O-beta-glucopyranoside, Kushenol W and Kushenol K which exhibited optimal binding with all the three conserved DV proteins. This study brings forth novel scaffolds against DV serotypes to serve as lead molecules for further optimization and drug development against all DV serotypes with equal effect against multiple disease causing DV proteins. We therefore anticipate that the insights given in the current study could be regarded valuable towards exploration and development of a broad-spectrum natural anti-dengue therapy.
A parallel corpus is an essential resource for statistical machine translation (SMT) but is often not available in the required amounts for all domains and languages. An approach is presented here which aims at producing parallel corpora from available comparable corpora. An SMT system is used to translate the source-language part of a comparable corpus and the translations are used as queries to conduct information retrieval from the target-language side of the comparable corpus. Simple filters are then used to score the SMT output and the IR-returned sentence with the filter score defining the degree of similarity between the two. Using SMT system output gives the benefit of trying to correct one of the common errors by sentence tail removal. The approach was applied to Arabic-English and French-English systems using comparable news corpora and considerable improvements were achieved in the BLEU score. We show that our approach is independent of the quality of the SMT system used to make the queries, strengthening the claim of applicability of the approach for languages and domains with limited parallel corpora available to start with. We compare our approach with one of the earlier approaches and show that our approach is easier to implement and gives equally good improvements.
This paper describes the development of several machine translation systems for the 2009 WMT shared task evaluation. We only consider the translation between French and English. We describe a statistical system based on the Moses decoder and a statistical post-editing system using SYSTRAN's rule-based system. We also investigated techniques to automatically extract additional bilingual texts from comparable corpora.
In this paper we present an extension of a successful simple and effective method for extracting parallel sentences from comparable corpora and we apply it to an Arabic/English NIST system. We experiment with a new TERp filter, along with WER and TER filters. We also report a comparison of our approach with that of (Munteanu and Marcu, 2005) using exactly the same corpora and show performance gain by using much lesser data. Our approach employs an SMT system built from small amounts of parallel texts to translate the source side of the nonparallel corpus. The target side texts are used, along with other corpora, in the language model of this SMT system. We then use information retrieval techniques and simple filters to create parallel data from a comparable news corpora. We evaluate the quality of the extracted data by showing that it significantly improves the performance of an SMT systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright 漏 2024 scite LLC. All rights reserved.
Made with 馃挋 for researchers
Part of the Research Solutions Family.