IMPORTANCE The US is currently an epicenter of the coronavirus disease 2019 (COVID-19) pandemic, yet few national data are available on patient characteristics, treatment, and outcomes of critical illness from COVID-19. OBJECTIVES To assess factors associated with death and to examine interhospital variation in treatment and outcomes for patients with COVID-19. DESIGN, SETTING, AND PARTICIPANTS This multicenter cohort study assessed 2215 adults with laboratory-confirmed COVID-19 who were admitted to intensive care units (ICUs) at 65 hospitals across the US from March 4 to April 4, 2020. EXPOSURES Patient-level data, including demographics, comorbidities, and organ dysfunction, and hospital characteristics, including number of ICU beds. MAIN OUTCOMES AND MEASURES The primary outcome was 28-day in-hospital mortality. Multilevel logistic regression was used to evaluate factors associated with death and to examine interhospital variation in treatment and outcomes. RESULTS A total of 2215 patients (mean [SD] age, 60.5 [14.5] years; 1436 [64.8%] male; 1738 [78.5%] with at least 1 chronic comorbidity) were included in the study. At 28 days after ICU admission, 784 patients (35.4%) had died, 824 (37.2%) were discharged, and 607 (27.4%) remained hospitalized. At the end of study follow-up (median, 16 days; interquartile range, 8-28 days), 875 patients (39.5%) had died, 1203 (54.3%) were discharged, and 137 (6.2%) remained hospitalized. Factors independently associated with death included older age (Ն80 vs <40 years of age: odds ratio [OR], 11.15; 95% CI, 6.19-20.06), male sex (OR, 1.50; 95% CI, 1.19-1.90), higher body mass index (Ն40 vs <25: OR, 1.51; 95% CI, 1.01-2.25), coronary artery disease (OR, 1.47; 95% CI, 1.07-2.02), active cancer (OR, 2.15; 95% CI, 1.35-3.43), and the presence of hypoxemia (PaO 2 :FIO 2 <100 vs Ն300 mm Hg: OR, 2.94; 95% CI, 2.11-4.08), liver dysfunction (liver Sequential Organ Failure Assessment score of 2 vs 0: OR, 2.61; 95% CI, 1.30-5.25), and kidney dysfunction (renal Sequential Organ Failure Assessment score of 4 vs 0: OR, 2.43; 95% CI, 1.46-4.05) at ICU admission. Patients admitted to hospitals with fewer ICU beds had a higher risk of death (<50 vs Ն100 ICU beds: OR, 3.28; 95% CI, 2.16-4.99). Hospitals varied considerably in the risk-adjusted proportion of patients who died (range, 6.6%-80.8%) and in the percentage of patients who received hydroxychloroquine, tocilizumab, and other treatments and supportive therapies. CONCLUSIONS AND RELEVANCE This study identified demographic, clinical, and hospital-level risk factors that may be associated with death in critically ill patients with COVID-19 and can facilitate the identification of medications and supportive therapies to improve outcomes.
Background: Hyperimmune anti-COVID-19 Intravenous Immunoglobulin (C-IVIG) is an unexplored therapy amidst the rapidly evolving spectrum of medical therapies for COVID-19 and is expected to counter the three most lifethreatening consequences of COVID-19 including lung injury by the virus, cytokine storm and sepsis. Methods: A single center, phase I/II, randomized controlled, single-blinded trial was conducted at Dow University of Health Sciences, Karachi, Pakistan. Participants were COVID-19 infected individuals, classified as either severely or critically ill with Acute Respiratory Distress Syndrome (ARDS). Participants were randomized through parallel-group design with sequential assignment in a 4:1 allocation to either intervention group with four C-IVIG dosage arms (0.15, 0.20, 0.25, 0.30 g/kg), or control group receiving standard of care only (n = 10). Primary outcomes were 28-day mortality, patient's clinical status on ordinal scale and Horowitz index (HI), and were analysed in all randomized participants that completed the follow-up period (intentionto-treat population). The trial was registered at clinicaltrials.gov (NCT04521309). Findings: Fifty participants were enrolled in the study from June 19, 2020 to February 3, 2021 with a mean age of 56.54 §13.2 years of which 22 patients (44%) had severe and 28 patients (56%) had critical COVID-19. Mortality occurred in ten of 40 participants (25%) in intervention group compared to six of ten (60%) in control group, with relative risk reduction in intervention arm I (RR, 0.333; 95% CI, 0.087À1.272), arm II (RR, 0.5; 95% CI, 0.171À1.463), arm III (RR, 0.167; 95% CI, 0.024À1.145), and arm IV (RR, 0.667; 95% CI, 0.268À1.660). In intervention group, median HI significantly improved to 359 mmHg [interquartile range (IQR) 127À400, P = 0.009)] by outcome day, while the clinical status of intervention group also improved as compared to control group, with around 15 patients (37.5%) being discharged by 7th day with complete recovery. Additionally, resolution of chest X-rays and restoration of biomarkers to normal levels were also seen in intervention groups. No drug-related adverse events were reported during the study. Interpretation: Administration of C-IVIG in severe and critical COVID-19 patients was safe, increased the chance of survival and reduced the risk of disease progression. Funding: Higher Education Commission (HEC), Pakistan (Ref no. 20-RRG-134/RGM/R&D/HEC/2020).
Diabetic nephropathy is rapidly becoming the major cause of end-stage renal disease and cardiovascular mortality worldwide. Standard of care therapies include strict glycemic control and blockade of the renin-angiotensin-aldosterone axis. While these treatments slow progression of diabetic nephropathy, they do not arrest or reverse it. Newer therapies targeting multiple molecular pathways involved in renal inflammation, fibrosis, and oxidative stress have shown promise in animal models. Subsequently, many of these agents have been investigated in clinical human trials with mixed results. In this review, we will discuss recent findings of novel agents used in the treatment of diabetic nephropathy.
The current study aimed to assess the microbial quality of municipal (tap) and ground (borehole) water in Karachi, Pakistan. A health survey was also conducted to assess possible health risks of the drinking water. Fifty water samples (n = 25 each of tap and ground water) were collected from various locations of five administrative districts of Karachi for bacteriological analysis. In addition, a survey was conducted to assess the impact of drinking water on the health of city residents. Microbiological analysis results showed the presence of total coliform in 48 out of 50 (96%) tested samples. The total viable plate count at 37 °C was >200 CFU/ml in the majority of the collected samples which exceeded the permissible limit set by the World Health Organization (WHO) and the Pakistan Environmental Protection Agency. To evaluate the health risk of contaminated water, a total of 744 residents were interviewed. The information acquired from this field work revealed a high prevalence of waterborne diseases in the order of diarrhea and vomiting > skin problems > malaria > prolonged fever > eye problems and jaundice. To solve water and environmental problems, awareness and regular monitoring programs of water management and safe disposal of waste have been suggested.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.