The increased intracranial pressure (ICP) can be described as an increase in pressure around the brain and can lead to serious health problems. The assessment of ultrasound images is commonly conducted by skilled experts which is a time-consuming approach, but advanced computer-aided diagnosis (CAD) systems can assist the physician to decrease the time of ICP diagnosis. The accurate detection of the nerve optic regions, with drawing a precise slope line behind the eyeball and calculating the diameter of nerve optic, are the main aims of this research. First, the Fuzzy C-mean (FCM) clustering is employed for segmenting the input CT screening images into the different parts. Second, a histogram equalization approach is used for region-based image quality enhancement. Then, the Local Directional Number method (LDN) is used for representing some key information in a new image. Finally, a cascade Convolutional Neural Network (CNN) is employed for nerve optic segmentation by two distinct input images. Comprehensive experiments on the CT screening dataset [The Cancer Imaging Archive (TCIA)] consisting of 1600 images show the competitive results of inaccurate extraction of the brain features. Also, the indexes such as Dice, Specificity, and Precision for the proposed approach are reported 87.7%, 91.3%, and 90.1%, respectively. The final classification results show that the proposed approach effectively and accurately detects the nerve optic and its diameter in comparison with the other methods. Therefore, this method can be used for early diagnose of ICP and preventing the occurrence of serious health problems in patients.
In location-based social networks (LBSNs), exploit several key features of points-of-interest (POIs) and users on precise POI recommendation be significant. In this work, a novel POI recommendation pipeline based on the convolutional neural network named RecPOID is proposed, which can recommend an accurate sequence of top-k POIs and considers only the effect of the most similar pattern friendship rather than all user’s friendship. We use the fuzzy c-mean clustering method to find the similarity. Temporal and spatial features of similar friends are fed to our Deep CNN model. The 10-layer convolutional neural network can predict longitude and latitude and the Id of the next proper locations; after that, based on the shortest time distance from a similar pattern’s friendship, select the smallest distance locations. The proposed structure uses six features, including user’s ID, month, day, hour, minute, and second of visiting time by each user as inputs. RecPOID based on two accessible LBSNs datasets is evaluated. Experimental outcomes illustrate considering most similar friendship could improve the accuracy of recommendations and the proposed RecPOID for POI recommendation outperforms state-of-the-art approaches.
Today, millions of active users spend a percentage of their time on location-based social networks like Yelp and Gowalla and share their rich information. They can easily learn about their friends' behaviors and where they are visiting and be influenced by their style. As a result, the existence of personalized recommendations and the investigation of meaningful features of users and Point of Interests (POIs), given the challenges of rich contents and data sparsity, is a substantial task to accurately recommend the POIs and interests of users in location-based social networks (LBSNs). This work proposes a novel pipeline of POI recommendations named DeePOF based on deep learning and the convolutional neural network. This approach only takes into consideration the influence of the most similar pattern of friendship instead of the friendship of all users. The mean-shift clustering technique is used to detect similarity. The most similar friends' spatial and temporal features are fed into our deep CNN technique. The output of several proposed layers can predict latitude and longitude and the ID of subsequent appropriate places, and then using the friendship interval of a similar pattern, the lowest distance venues are chosen. This combination method is estimated on two popular datasets of LBSNs. Experimental results demonstrate that analyzing similar friendships could make recommendations more accurate and the suggested model for recommending a sequence of top-k POIs outperforms state-of-the-art approaches.
In recent years, there has been a growing interest in developing next point-of-interest (POI) recommendation systems in both industry and academia. However, current POI recommendation strategies suffer from the lack of sufficient mixing of details of the features related to individual users and their corresponding contexts. To overcome this issue, we propose a deep learning model based on an attention mechanism in this study. The suggested technique employs an attention mechanism that focuses on the pattern’s friendship, which is responsible for concentrating on the relevant features related to individual users. To compute context-aware similarities among diverse users, our model employs six features of each user as inputs, including user ID, hour, month, day, minute, and second of visiting time, which explore the influences of both spatial and temporal features for the users. In addition, we incorporate geographical information into our attention mechanism by creating an eccentricity score. Specifically, we map the trajectory of each user to a shape, such as a circle, triangle, or rectangle, each of which has a different eccentricity value. This attention-based mechanism is evaluated on two widely used datasets, and experimental outcomes prove a noteworthy improvement of our model over the state-of-the-art strategies for POI recommendation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.