Oxidation of a pair of associating thiols 1 and 2, each having a binding site [–C(=O)NHC(=O)NH–] and a recognition site (R1 or R2), is examined at various temperatures as a function of mole fraction of water (xw) in aqueous binary solvents with EtOH, CH3CN, and i-PrOH. The selectivity (r) — a measure of the degree of molecular recognition in the oxidation — is represented by the logarithmic ratio of the yield of the unsymmetrical disulfide 4 to twice that of the symmetrical one 3. It is found that three distinct patterns are present in temperature–recognition profiles, depending on composition of the aqueous binary solvents: (1) “progressive decrease” in the lower xw region; (2) “presence of a maximum” in the medium xw region; (3) “progressive increase” in the higher xw region. It is also clarified that aqueous mixed solvents in the medium xw region are indispensable for maximal recognition to occur against temperature (the presence of a maximum in the temperature–selectivity relationship). Dependence of the r on the xw at lower and higher temperatures, presence of three distinct patterns in the temperature–recognition profiles, and so on are discussed in relation to the maximal recognition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.