We investigated the ozone oxidation characteristics on a hydrogen-terminated Si substrate. A high-concentration ozone gas generator with an ozone condensation unit was specially designed and assembled for this study. During the oxidation by ozone with the concentration of 25 vol.% in the temperature range from 340°C to 625°C at 8 Torr (1.1 kPa), the formed oxide film thickness increased with oxidation time in accordance with the parabolic law, which suggests a diffusion-controlled step, while the oxidation by pure oxygen attained saturated states within 3 min of initiating oxidation. The activation energy for parabolic constants in the ozone oxidation was determined to be 0.52 eV. This value is much smaller than the activation energy for dry oxidation with oxygen, while it is almost the same as that in the plasma oxidation with the mixture of rare gas and oxygen. Moreover, the quality of the ozone oxidation film was evaluated by estimating the amount of suboxides (Si 3ϩ ϩ Si 2ϩ ϩ Si ϩ ) using x-ray photoelectron spectroscopy (XPS) analysis and the compressive stress using Fourier transform infrared (FT-IR) spectroscopic analysis. Both results showed that the quality of film subjected to ozone oxidation at 500°C is equal or superior to that of the film subjected to pyrogenic oxidation at 750°C in spite of the faster oxidation rate, and thus, the significant advantages of ozone oxidation at low oxidation temperatures could be confirmed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.