Inflammatory bowel disease (IBD) is a chronic relapsing inflammation in the gastrointestinal tract. Biological therapeutics and orally available small molecules like tofacitinib (a JAK inhibitor) have been developed to treat IBD, but half of the patients treated with these drugs fail to achieve sustained remission. In the present study, we compared the therapeutic effects of BJ-3105 (a 6-alkoxypyridin-3-ol derivative) and tofacitinib in IBD. BJ-3105 induced activation of AMP-activated protein kinase (AMPK) in the kinase activity measurement and recovery from cytokine-induced AMPK deactivation in HT-29 human colonic epithelial cells. Similar to tofacitinib and D942 (an AMPK activator), BJ-3105 inhibited IL-6-induced JAK2/STAT3 phosphorylation and TNF-α-stimulated activation of IKK/NF-κB, and consequently, stimulus-induced upregulations of inflammatory cytokines and inflammasome components. In addition, unlike tofacitinib or D942, BJ-3105 inhibited NADPH oxidase (NOX) activation and consequent superoxide production induced by activators (mevalonate and geranylgeranyl pyrophosphate) of the NOX cytosolic component Rac. In mice, oral administration with BJ-3105 ameliorated dextran sulfate sodium (DSS)-induced colitis and azoxymethane/DSS-induced colitis-associated tumor formation (CAT) much more potently than that with tofacitinib. Moreover, BJ-3105 suppressed the more severe form of colitis and CAT formation in mice with AMPK knocked-out in macrophages (AMPKαfl/fl-Lyz2-Cre mice) with much greater efficacy than tofacitinib. Taken together, our findings suggest BJ-3105, which exerted a much better anti-colitis effect than tofacitinib through AMPK activation and NOX inhibition, is a promising candidate for the treatment of IBD.
From our data we conclude that the extent of CTNNB1 gene promoter methylation by reactive oxygen species correlates with the migratory and invasive abilities of colon cancer cells. Our results suggest that epigenetic regulation of CTNNB1 may serve as a novel avenue to block colon cancer cell migration and invasion.
Purpose
Androgen-refractory prostate cancer (ARPC) is one of the aggressive human cancers with metastatic capacity and resistance to androgen deprivation therapy (ADT). The present study investigated the genes responsible for ARPC progression and ADT resistance, and their regulatory mechanisms.
Methods
Transcriptome analysis, co-immunoprecipitation, confocal microscopy, and FACS analysis were performed to determine differentially-expressed genes, integrin α3β4 heterodimer, and cancer stem cell (CSC) population. miRNA array, 3′-UTR reporter assay, ChIP assay, qPCR, and immunoblotting were used to determine differentially-expressed microRNAs, their binding to integrin transcripts, and gene expressions. A xenograft tumor model was used to assess tumor growth and metastasis.
Results
Metastatic ARPC cell lines (PC-3 and DU145) exhibiting significant downregulation of ZBTB16 and AR showed significantly upregulated ITGA3 and ITGB4. Silencing either one of the integrin α3β4 heterodimer significantly suppressed ARPC survival and CSC population. miRNA array and 3′-UTR reporter assay revealed that miR-200c-3p, the most strongly downregulated miRNA in ARPCs, directly bound to 3′-UTR of ITGA3 and ITGB4 to inhibit the gene expression. Concurrently, miR-200c-3p also increased PLZF expression, which, in turn, inhibited integrin α3β4 expression. Combination treatment with miR-200c-3p mimic and AR inhibitor enzalutamide showed synergistic inhibitory effects on ARPC cell survival in vitro and tumour growth and metastasis of ARPC xenografts in vivo, and the combination effect was greater than the mimic alone.
Conclusion
This study demonstrated that miR-200c-3p treatment of ARPC is a promising therapeutic approach to restore the sensitivity to anti-androgen therapy and inhibit tumor growth and metastasis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.