This study investigated the protective effects of carvedilol, a potent antioxidant, in a rat model of tourniquet-induced ischaemia-reperfusion injury of the hind limb. Thirty rats were divided equally into three groups: the control group (group 1) was only anaesthetized, without creating an ischaemia-reperfusion injury; group 2 was submitted to ischaemia (4 h), followed by a 2-h reperfusion period; and group 3 was pre-treated with carvedilol (2 mg/kg per day) for 10 days prior to ischaemia-reperfusion. Ischaemia-reperfusion produced a significant decrease in superoxide dismutase and glutathione peroxidase activities in the liver, lungs, muscle and serum compared with control treatment, and pre-treatment with carvedilol prevented these changes. Ischaemia-reperfusion caused a significant increase in malondialdehyde and nitric oxide (NO) levels in liver, lungs, muscle (except NO) and serum compared with control treatment, and carvedilol prevented these changes. In conclusion, it might be inferred that carvedilol could be used safely to prevent oxidative injury during reperfusion following ischaemia in humans.
Reperfusion injury is a consequence of inadequate energy supply and acidosis in ischemic tissues and a chain of events triggered by oxygen-derived free radicals released in response to exposure of oxygen. In this study, we aimed to assess the effects of clopidogrel, an antithrombotic agent, on experimental ischemia-reperfusion model in rats. The ischemia was performed by blockade of the circulation of right lower extremity at trochanter major level for 6 hours. Then, the extremity was reperfused for 4 hours. Another group of rats pretreated with clopidogrel (0.2 mg/kg/day) for 10 days prior to ischemia-reperfusion. After the reperfusion period, all rats were anesthetized with ketamine. Blood and tissue samples from the gastrocnemius muscle, liver and lungs were taken for the measurement of malondialdehyde (MDA), glutathione (GSH) levels and superoxide dismutase (SOD) activity. The results revealed that clopidogrel prevented the increase in MDA level and the decrease in GSH level and SOD activity caused by ischemia-reperfusion both in tissue samples and plasma. These findings suggest that clopidogrel is beneficial in prevention of ischemia-reperfusion injury probably via its effects on inflammatory cells, platelets, and endothelial cells.
BackgroundVarious types of markers have been used so far in order to reveal myocardial perfusion defect. However, these markers usually appear in the necrosis phase or in the late stage. Having been the focus of various investigations recently, ischemia-modified albumin (IMA) is helpful in establishing diagnosis in the early stages of ischemia, before necrosis develops.Methods and Results30 patients that underwent only coronary bypass surgery due to ischemic heart disease within a specific period of time have been included in the study. IMA levels were studied in the preoperative, intraoperative, and postoperative periods. The albumin cobalt binding assay was used for IMA determination. Hemodynamic parameters (atrial fibrillation, the need for inotropic support, ventricular arrhythmia) of the patients in the postoperative stage were evaluated. Intraoperative measurement values (mean ± SD) of IMA (0.67677 ± 0.09985) were statistically significantly higher than those in the preoperative (0.81516 ± 0.08894) and postoperative (0.70477 ± 0.07523) measurements. Considering atrial fibrillation and need for inotropics, a parallelism was detected with the levels of IMA.ConclusionsIMA is an early-rising marker of cardiac ischemia and enables providing a direction for the treatment at early phases.
Background: Thoracic and thoracoabdominal aortic intervention carries a significant risk of spinal cord ischemia. The pathophysiologic mechanisms that cause hypoxic/ischemic injury to the spinal cord have not been totally explained. In normal spinal cord, neurons and glial cells do not express type IV collagen. Type IV collagen produced by reactive astrocytes is reported to participate in glial scar formation. Tissue inhibitors of metalloproteinases (TIMPs) are endogenous inhibitors that regulate the activity of the matrix metalloproteinases (MMPs). TIMP-2 binds strongly with MMP-2, facilitating activation by membrane-type MMP. Imbalance between TIMPs and MMPs can lead to excessive degradation of matrix components. Type IV collagen involved in the blood-brain barrier disruption and glial scar formation, TIMP-2 influences MMP-2 that controls degradation of collagen I and IV. Objective: To examine the immunohistochemical analysis of TIMP-2 and collagen types I-IV in experimental spinal cord ischemia-reperfusion in rats. Methods: Thirty-two male Wistar rats weighing 250-300 g were divided into four groups: group S: sham group (n = 8); group 0P: 30-minute occlusion without perfusion (n = 8); group 3P: 30-minute occlusion and 3-hour perfusion (n = 8); and group 24P: 30-minute occlusion and 24-hour perfusion (n = 8). Infrarenal aorta was cross-clamped at two sites by using two aneurysm clips for 30 minutes. Reperfusion was provided after removal of the clips. Lumbar spinal cord segments were removed for immunohistochemical analysis. Results: TIMP-2 and collagen staining in 3-hour perfused (3P) group were nearly the same with sham group (S). TIMP-2 and collagen staining increased in the 24-hour perfused group. Conclusion: Alterations in collagen levels may relate to the biphasic breakdown of the blood-brain barrier and collagen staining in new cell types with relation to glial scar formation. Our results demonstrate that 3-hour perfusion after occlusion in hypoxic/ischemic spinal cord injury seems to be the critical reversible period.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.