This paper presents a vehicle price prediction system by using the supervised machine learning technique. The research uses multiple linear regression as the machine learning prediction method which offered 98% prediction precision. Using multiple linear regression, there are multiple independent variables but one and only one dependent variable whose actual and predicted values are compared to find precision of results. This paper proposes a system where price is dependent variable which is predicted, and this price is derived from factors like vehicle's model, make, city, version, color, mileage, alloy rims and power steering.
General TermsMachine Learning.
An energy optimization strategy is proposed to minimize operation cost and carbon emission with and without demand response programs (DRPs) in the smart grid (SG) integrated with renewable energy sources (RESs). To achieve optimized results, probability density function (PDF) is proposed to predict the behavior of wind and solar energy sources. To overcome uncertainty in power produced by wind and solar RESs, DRPs are proposed with the involvement of residential, commercial, and industrial consumers. In this model, to execute DRPs, we introduced incentive-based payment as price offered packages. Simulations are divided into three steps for optimization of operation cost and carbon emission: (i) solving optimization problem using multi-objective genetic algorithm (MOGA), (ii) optimization of operating cost and carbon emission without DRPs, and (iii) optimization of operating cost and carbon emission with DRPs. To endorse the applicability of the proposed optimization model based on MOGA, a smart sample grid is employed serving residential, commercial, and industrial consumers. In addition, the proposed optimization model based on MOGA is compared to the existing model based on multi-objective particle swarm optimization (MOPSO) algorithm in terms of operation cost and carbon emission. The proposed optimization model based on MOGA outperforms the existing model based on the MOPSO algorithm in terms of operation cost and carbon emission. Experimental results show that the operation cost and carbon emission are reduced by 24% and 28% through MOGA with and without the participation of DRPs, respectively.
Zinc oxide has been the focus of material research due to its potential applications in a variety of novel fields. The material exhibits anisotropic growth in the form of single crystal rods/wires of length in microns and thickness in several tens of nanometers through a facile and low temperature hydrothermal route wherein size, morphology, orientation, and growth rate are strongly dependent on a number of synthesis parameters. In this review article we intend to present/discuss the effects of important growth parameters of zinc oxide that have been reported in the literature. These parameters include concentration of the precursor solution, growth time, role of hexamine, synthesis temperature, pH of the precursor, and seeding layer deposited on a substrate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.