Food preservation involves different food processing steps to maintain food quality at a desired level so that maximum benefits and nutrition values can be achieved. Food preservation methods include growing, harvesting, processing, packaging, and distribution of foods. The key objectives of food preservation are to overcome inappropriate planning in agriculture, to produce value-added products, and to provide variation in diet. Food spoilage could be caused by a wide range of chemical and biochemical reactions. To impede chemical and microbial deterioration of foods, conventional and primitive techniques of preserving foods like drying, chilling, freezing, and pasteurization have been fostered. In recent years, the techniques to combat these spoilages are becoming sophisticated and have gradually altered to a highly interdisciplinary science. Highly advanced technologies like irradiation, high-pressure technology, and hurdle technology are used to preserve food items. This review article presents and discusses the mechanisms, application conditions, and advantages and disadvantages of different food preservation techniques. This article also presents different food categories and elucidates different physical, chemical, and microbial factors responsible for food spoilage. Furthermore, the market economy of preserved and processed foods has been analyzed in this article.
Self-assembly of anisotropic nanomaterials into fluids is a key step in producing bulk, solid materials with controlled architecture and properties. In particular, the ordering of anisotropic nanomaterials in lyotropic liquid crystalline phases facilitates the production of films, fibers, and devices with anisotropic mechanical, thermal, electrical, and photonic properties. While often considered a new area of research, experimental and theoretical studies of nanoscale mesogens date back to the 1920s. Through modern computational, synthesis, and characterization tools, there are new opportunities to design liquid crystalline phases to achieve complex architectures and enable new applications in opto-electronics, multifunctional textiles, and conductive films. This review article provides a brief review of the liquid crystal phase behavior of one dimensional nanocylinders and two dimensional nanoplatelets, a discussion of investigations on the effects of size and shape dispersity on phase behavior, and outlook for exploiting size and shape dispersity in designing materials with controlled architectures.
A Landau-de
Gennes formulation coupled with a mass-transfer
equation was used to track the evaporation front and the development
of chiral microstructures during the casting of sulfuric acid-hydrolyzed
cellulose nanocrystal (CNC) films. These simulations are compared
to thin-film casting experiments that used analogous processing parameters
and environments. The results show that the initial concentration,
chiral strength, surface anchoring, speed of drying, and the influence
of initial shear alignment all affect the uniformity of the microstructure
and the orientation of the chiral director. In this report, we aim
to show that under optimal casting conditions, the lateral size of
planar microstructural domains that exhibit uniform selective reflection
can be achieved on the order of millimeters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.