A time-domain electric field volume integral equation (TD-EFVIE) solver is proposed for characterizing transient electromagnetic wave interactions on high-contrast dielectric scatterers. The TD-EFVIE is discretized using the Schaubert-Wilton-Glisson (SWG) and approximate prolate spherical wave (APSW) functions in space and time, respectively. The resulting system of equations cannot be solved by a straightforward application of the marching on-in-time (MOT) scheme since the two-sided APSW interpolation functions require the knowledge of unknown "future" field samples during time marching. Causality of the MOT scheme is restored using an extrapolation technique that predicts the future samples from known "past" ones. Unlike the extrapolation techniques developed for MOT schemes that are used in solving time-domain surface integral equations, this scheme trains the extrapolation coefficients using samples of exponentials with exponents on the complex frequency plane. This increases the stability of the MOT-TD-EFVIE solver significantly, since the temporal behavior of decaying and oscillating electromagnetic modes induced inside the scatterers is very accurately taken into account by this new extrapolation scheme. Numerical results demonstrate that the proposed MOT solver maintains its stability even when applied to analyzing wave interactions on high-contrast scatterers.
Index Terms-Band-limited interpolation, electric field volume integral equation (EFVIE), extrapolation, marching on-in-time (MOT) method, time-domain analysis, transient analysis. I. INTRODUCTION T RANSIENT electromagnetic scattering from inhomogeneous dielectric volumes residing in an unbounded background medium can be analyzed by solving the timedomain electric field volume integral equation (TD-EFVIE) [1]-[8]. First, the scattered electric field is represented as a Manuscript
A method for constructing explicit marching-on-intime (MOT) schemes to solve the time domain magnetic field volume integral equation (TD-MFVIE) on inhomogeneous dielectric scatterers is proposed. The TD-MFVIE is cast in the form of an ordinary differential equation (ODE) and the unknown magnetic field is expanded using curl conforming spatial basis functions. Inserting this expansion into the TD-MFVIE and spatially testing the resulting equation yield an ODE system with a Gram matrix. This system is integrated in time for the unknown time-dependent expansion coefficients using a linear multistep method. The Gram matrix is sparse and well-conditioned for Galerkin testing and consists of only four diagonal blocks for point testing. The resulting explicit MOT schemes, which call for the solution of this matrix system at every time step, are more efficient than their implicit counterparts, which call for inversion of a fuller matrix system at lower frequencies. Numerical results compare the efficiency, accuracy, and stability of the explicit MOT schemes and their implicit counterparts for low-frequency excitations. The results show that the explicit MOT scheme with point testing is significantly faster than the other three solvers without sacrificing from accuracy.
A fully explicit marching-on-in-time (MOT) scheme for solving the time domain Kirchhoff (surface) integral equation to analyze transient acoustic scattering from rigid objects is presented. A higher-order Nyström method and a PE(CE)m-type ordinary differential equation integrator are used for spatial discretization and time marching, respectively. The resulting MOT scheme uses the same time step size as its implicit counterpart (which also uses Nyström method in space) without sacrificing from the accuracy and stability of the solution. Numerical results demonstrate the accuracy, efficiency, and applicability of the proposed explicit MOT solver.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.