1. A study was conducted to study direct dominance genetic and maternal effects on genetic evaluation of production traits in dual-purpose chickens. The data set consisted of records of body weight and egg production of 49 749 Mazandaran fowls from 19 consecutive generations. Based on combinations of different random effects, including direct additive and dominance genetic and maternal additive genetic and environmental effects, 8 different models were compared. 2. Inclusion of a maternal genetic effect in the models noticeably improved goodness of fit for all traits. Direct dominance genetic effect did not have noticeable effects on goodness of fit but simultaneous inclusion of both direct dominance and maternal additive genetic effects improved fitting criteria and accuracies of genetic parameter estimates for hatching body weight and egg production traits. 3. Estimates of heritability (h) for body weights at hatch, 8 weeks and 12 weeks of age (BW0, BW8 and BW12, respectively), age at sexual maturity (ASM), average egg weights at 28-32 weeks of laying period (AEW), egg number (EN) and egg production intensity (EI) were 0.08, 0.21, 0.22, 0.22, 0.21, 0.09 and 0.10, respectively. For BW0, BW8, BW12, ASM, AEW, EN and EI, proportion of dominance genetic to total phenotypic variance (d) were 0.06, 0.08, 0.01, 0.06, 0.06, 0.08 and 0.07 and maternal heritability estimates (m) were 0.05, 0.04, 0.03, 0.13, 0.21, 0.07 and 0.03, respectively. Negligible coefficients of maternal environmental effect (c) from 0.01 to 0.08 were estimated for all traits, other than BW0, which had an estimate of 0.30. 4. Breeding values (BVs) estimated for body weights at early ages (BW0 and BW8) were considerably affected by components of the models, but almost similar BVs were estimated by different models for higher age body weight (BW12) and egg production traits (ASM, AEW, EN and EI). Generally, it could be concluded that inclusion of maternal effects (both genetic and environmental) and, to a lesser extent, direct dominance genetic effect would improve the accuracy of genetic evaluation for early age body weights in dual-purpose chickens.