It is nearly half a century past the age of the introduction of the Central Dogma (CD) of molecular biology. This biological axiom has been developed and currently appears to be all the more complex. In this study, we modified CD by adding further species to the CD information flow and mathematically expressed CD within a dynamic framework by using Boolean network based on its present-day and 1965 editions. We show that the enhancement of the Dogma not only now entails a higher level of complexity, but it also shows a higher level of robustness, thus far more consistent with the nature of biological systems. Using this mathematical modeling approach, we put forward a logic-based expression of our conceptual view of molecular biology. Finally, we show that such biological concepts can be converted into dynamic mathematical models using a logic-based approach and thus may be useful as a framework for improving static conceptual models in biology.
According to these findings, we speculated that overexpression of GSTs mRNA in patients revealed that GSTs plays an important role in cellular protection against oxidative stress of MS in airway wall of patients.
In conclusion, our findings suggest that simultaneous targeting of key regulatory genes and miRNAs may be a useful strategy for prevention of CRC metastasis.
It is nearly half a century past the age of the introduction of the Central Dogma (CD) of molecular biology. This biological axiom has been developed and currently appears to be all the more complex. In this study, we modified CD by adding further species to the CD information flow and mathematically expressed CD within a dynamic framework by using Boolean network based on its present-day and 1965 editions. We show that the enhancement of the Dogma not only now entails a higher level of complexity, but it also shows a higher level of robustness, thus far more consistent with the nature of biological systems. Using this mathematical modeling approach, we put forward a logic-based expression of our conceptual view of molecular biology. Finally, we show that such biological concepts can be converted into dynamic mathematical models using a logic-based approach and thus may be useful as a framework for improving static conceptual models in biology.
Alzheimer’s disease (AD) is a complex neurodegenerative disease with various deleterious perturbations in regulatory pathways of various brain regions. Thus, it would be critical to understanding the role of different regions of the brain in initiation and progression of AD, However, owing to complex and multifactorial nature of this disease, the molecular mechanism of AD has yet to be fully elucidated. To confront with this challenge, we launched a meta-analytical study of current transcriptomics data in four different regions of the brain in AD (Entorhinal, Hippocampus, Temporal and Frontal) with systems analysis of identifying involved signaling and metabolic pathways. We found different regulatory patterns in Entorhinal and Hippocampus regions to be associated with progression of AD. We also identified shared versus unique biological pathways and critical proteins among different brain regions. ACACB, GAPDH, ACLY, and EGFR were the most important proteins in Entorhinal, Frontal, Hippocampus and Temporal regions, respectively. Moreover, eight proteins including CDK5, ATP5G1, DNM1, GNG3, AP2M1, ALDOA, GPI, and TPI1 were differentially expressed in all four brain regions, among which, CDK5 and ATP5G1 were enriched in KEGG Alzheimer’s disease pathway as well.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.