The real-time estimation of polar motion (PM) is needed for the navigation of Earth satellite and interplanetary spacecraft. However, it is impossible to have real-time information due to the complexity of the measurement model and data processing. Various prediction methods have been developed. However, the accuracy of PM prediction is still not satisfactory even for a few days in the future. Therefore, new techniques or a combination of the existing methods need to be investigated for improving the accuracy of the predicted PM. There is a well-introduced method called Copula, and we want to combine it with singular spectrum analysis (SSA) method for PM prediction. In this study, first, we model the predominant trend of PM time series using SSA. Then, the difference between PM time series and its SSA estimation is modeled using Copula-based analysis. Multiple sets of PM predictions which range between 1 and 365 days have been performed based on an IERS 08 C04 time series to assess the capability of our hybrid model. Our results illustrate that the proposed method can efficiently predict PM. The improvement in PM prediction accuracy up to 365 days in the future is found to be around 40% on average and up to 65 and 46% in terms of success rate for the and , respectively.
Accurate, short-term predictions of Earth orientation parameters (EOP) are needed for many real-time applications including precise tracking and navigation of interplanetary spacecraft, climate forecasting, and disaster prevention. Out of the EOP, the LOD (length of day), which represents the changes in the Earth's rotation rate, is the most challenging to predict since it is largely affected by the torques associated with changes in atmospheric circulation. In this study, the combination of Copula-based analysis and singular spectrum analysis (SSA) method is introduced to improve the accuracy of the forecasted LOD. The procedure operates as follows: First, we derive the dependence structure between LOD and the Z component of the effective angular momentum (EAM) arising from atmospheric, hydrologic, and oceanic origins (AAM + HAM + OAM). Based on the fitted theoretical Copula, we then simulate LOD from the Z component of EAM data. Next, the difference between LOD time series and its Copula-based estimation is modeled using SSA. Multiple sets of short-term LOD prediction have been done based on the IERS 05 C04 time series to assess the capability of our hybrid model. The results illustrate that the proposed method can efficiently predict LOD.
The Potsdam Open Source Radio Interferometry Tool (PORT) is the very long baseline interferometry (VLBI) analysis software developed and maintained at the GFZ German Research Centre for Geosciences. Chiefly, PORT is tasked with the timely processing of VLBI sessions and post-processing activities supporting the generation of celestial and terrestrial reference frames. In addition, it serves as a framework for research and development within the GFZ’s VLBI working group and is part of the tool set employed in educating young researchers. Starting out from VLBI group delays, PORT estimates station and radio sources positions, as well as Earth orientation parameters, tropospheric parameters, and station clock offsets and drifts. The estimation procedures take into account all the necessary data analysis models that were agreed on for contributing to the ITRF2020 processing activities. The PORT code base is implemented in the MATLAB ® and Python programming languages. It is licensed under the terms of the GNU General Public License and available for download at GFZ’s Git server https://git.gfz-potsdam.de/vlbi-data-analysis/port.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.