Studying the edge states of a topological system and extracting their topological properties is of great importance in understanding and characterizing these systems. In this paper, we present a novel analytical approach for obtaining explicit expressions for the edge states in the Kane-Mele model within a ribbon geometry featuring armchair boundaries. Our approach involves a mapping procedure that transforms the system into an extended Su–Schrieffer–Heeger model, specifically a two-leg ladder, in momentum space. Through rigorous derivation, we determine various analytical properties of the edge states, including their wave functions and energy dispersion. Additionally, we investigate the condition for topological transition by solely analyzing the edge states, and we elucidate the underlying reasons for the violation of the bulk-edge correspondence in relatively narrow ribbons. Our findings shed light on the unique characteristics of the edge states in the quantum spin Hall phase of the Kane–Mele model and provide valuable insights into the topological properties of such systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.