Association between androgens and erythropoiesis has been known for more than seven decades. Androgens stimulate hematopoietic system by various mechanisms. These include stimulation of erythropoietin release, increasing bone marrow activity and iron incorporation into the red cells. Before the discovery of recombinant erythropoietin (rhEpo), androgens were used in the treatment of anemia associated with renal disease, bone marrow suppression, and hypopituitarism. Anabolism is an additional advantage of androgen therapy. Furthermore, in light of recent reports regarding adverse effects of rhEpo, the role of androgen therapy in various types of anemias should be readdressed. Polycythemia remains a known side effect of androgen therapy. In this review, we will briefly discuss the initial animal and human studies which demonstrated the role of androgens in the treatment of anemia, their mechanism of action, a detailed account of the efficacy of androgens in the treatment of various anemias, the erythropoietic side effects of androgens and finally, the relationship between hematocrit levels and cardiovascular disease.
Long-term prospective studies of ADT are needed to determine the timing of onset of these metabolic complications and to investigate the mechanism behind them. In the meantime, we recommend baseline and serial screening for fasting glucose, lipids, and other cardiovascular risk factors in men receiving ADT. Glucose tolerance tests and cardiac evaluation may be required in selected cases.
Exogenous testosterone has long been used in medicine as a pharmaceutical agent. Its use in hypogonadism is well characterized and its development as a drug has undergone several modifications in an attempt to achieve clinical success. As native testosterone is rapidly degraded, modified analogs have been developed to obtain a better pharmacokinetic profile. The developmental goals of testosterone analogs have evolved since its first introduction as an orally available form to longer acting and more stable forms such as injectables, depots and transdermal therapies. Several modalities of testosterone replacement are presently available, each differentiated by their route of delivery, half life, cost and ability to deliver physiologic levels of testosterone. As hypogonadism is often a life-long condition, physicians are compelled to use an appropriate therapy that best matches the needs of their patients. An ideal testosterone therapy should be able to deliver physiologic levels of testosterone and be safe, simple to use and cost effective. Present trends show transdermal therapies (gels and patches) along with long-acting injectables, such as Nebido, are quickly replacing intramuscular testosterone modalities. Compounds such as dihydrotestosterone, human chorionic gonadotropin, aromatase inhibitors and clomiphene are presently being studied in specific subgroups of men. Additionally, several new compounds, such as selective androgen-receptor modulators and 7-alpha-methyl-19-nortestosterone, are being developed to target androgen receptors in specific tissues. A further understanding of the androgen receptor and subsequent discovery of targeted drugs may yield more individualized treatment modalities. This will enhance the effectiveness of available therapies, while mitigating their undesirable effects.
BackgroundCushing's Syndrome (CS) which is caused by isolated Corticotropin-releasing hormone (CRH) production, rather than adrenocorticotropin (ACTH) production, is extremely rare.MethodsWe describe the clinical presentation, course, laboratory values and pathologic findings of a patient with isolated ectopic CRH causing CS. We review the literature of the types of tumors associated with this unusual syndrome and the behavior of these tumors by endocrine testing.ResultsA 56 year old woman presented with clinical and laboratory features consistent with ACTH-dependent CS. Pituitary imaging was normal and cortisol did not suppress with a high dose dexamethasone test, consistent with a diagnosis of ectopic ACTH. CT imaging did not reveal any discrete lung lesions but there were mediastinal and abdominal lymphadenopathy and multiple liver lesions suspicious for metastatic disease. Laboratory testing was positive for elevated serum carcinoembryonic antigen and the neuroendocrine marker chromogranin A. Serum markers of carcinoid, medullary thyroid carcinoma, and pheochromocytoma were in the normal range. Because the primary tumor could not be identified by imaging, biopsy of the presumed metastatic liver lesions was performed. Immunohistochemistry was consistent with a neuroendocrine tumor, specifically small cell carcinoma. Immunostaining for ACTH was negative but was strongly positive for CRH and laboratory testing revealed a plasma CRH of 10 pg/ml (normal 0 to 10 pg/ml) which should have been suppressed in the presence of high cortisol.ConclusionsThis case illustrates the importance of considering the ectopic production of CRH in the differential diagnosis for presentations of ACTH-dependent Cushing's Syndrome.
Enhanced levels of nuclear factor (NF)-κB-inducing kinase (NIK), an upstream kinase in the NF-κB pathway, have been implicated in the pathogenesis of chronic inflammation in diabetes. We investigated whether increased levels of NIK could induce skeletal muscle insulin resistance. Six obese subjects with metabolic syndrome underwent skeletal muscle biopsies before and six months after gastric bypass surgery to quantitate NIK protein levels. L6 skeletal myotubes, transfected with NIK wild-type or NIK kinase-dead dominant negative plasmids, were treated with insulin alone or with adiponectin and insulin. Effects of NIK overexpression on insulin-stimulated glucose uptake were estimated using tritiated 2-deoxyglucose uptake. NF-κB activation (EMSA), phosphatidylinositol 3 (PI3) kinase activity, and phosphorylation of inhibitor κB kinase β and serine-threonine kinase (Akt) were measured. After weight loss, skeletal muscle NIK protein was significantly reduced in association with increased plasma adiponectin and enhanced AMP kinase phosphorylation and insulin sensitivity in obese subjects. Enhanced NIK expression in cultured L6 myotubes induced a dose-dependent decrease in insulin-stimulated glucose uptake. The decrease in insulin-stimulated glucose uptake was associated with a significant decrease in PI3 kinase activity and protein kinase B/Akt phosphorylation. Overexpression of NIK kinase-dead dominant negative did not affect insulin-stimulated glucose uptake. Adiponectin treatment inhibited NIK-induced NF-κB activation and restored insulin sensitivity by restoring PI3 kinase activation and subsequent Akt phosphorylation. These results indicate that NIK induces insulin resistance and further indicate that adiponectin exerts its insulin-sensitizing effect by suppressing NIK-induced skeletal muscle inflammation. These observations suggest that NIK could be an important therapeutic target for the treatment of insulin resistance associated with inflammation in obesity and type 2 diabetes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.