Glucose is the main physiological stimulus for insulin biosynthesis and secretion by pancreatic -cells. Glucose-6-phosphatase (G-6-Pase) catalyzes the dephosphorylation of glucose-6-phosphate to glucose, an opposite process to glucose utilization. G-6-Pase activity in pancreatic islets could therefore be an important factor in the control of glucose metabolism and, consequently, of glucose-dependent insulin secretion. While G-6-Pase activity has been shown to be present in pancreatic islets, the gene responsible for this activity has not been conclusively identified. A homolog of liver glucose-6-phosphatase (LG-6-Pase) specifically expressed in islets was described earlier; however, the authors could not demonstrate enzymatic activity for this protein. Here we present evidence that the previously identified islet-specific glucose-6-phosphatase-related protein (IGRP) is indeed the major islet glucose-6-phosphatase. IGRP overexpressed in insect cells possesses enzymatic activity comparable to the previously described G-6-Pase activity in islets. The K m and V max values determined using glucose-6-phosphate as the substrate were 0.45 mM and 32 nmol/mg/min by malachite green assay, and 0.29 mM and 77 nmol/mg/min by glucose oxidase/peroxidase coupling assay, respectively. High-throughput screening of a small molecule library led to the identification of an active compound that specifically inhibits IGRP enzymatic activity. Interestingly, this inhibitor did not affect LG-6-Pase activity, while conversely LG-6-Pase inhibitors did not affect IGRP activity. These data demonstrate that IGRP is likely the authentic islet-specific glucose-6-phosphatase catalytic subunit, and selective inhibitors to this molecule can be obtained. IGRP inhibitors may be an attractive new approach for the treatment of insulin secretion defects in type 2 diabetes.
Antibody-drug conjugates (ADC) represent a promising therapeutic modality for managing cancer. Here, we report a novel humanized ADC that targets the tetraspanin-like protein TM4SF1. TM4SF1 is highly expressed on the plasma membranes of many human cancer cells and also on the endothelial cells lining tumor blood vessels. TM4SF1 is internalized upon interaction with antibodies. We hypothesized that an ADC against TM4SF1 would inhibit cancer growth directly by killing cancer cells and indirectly by attacking the tumor vasculature. We generated a humanized anti-human TM4SF1 monoclonal antibody, v1.10, and armed it with an auristatin cytotoxic agent LP2 (chemical name mc-3377). v1.10-LP2 selectively killed cultured human tumor cell lines and human endothelial cells that express TM4SF1. Acting as a single agent, v1.10-LP2 induced complete regression of several TM4SF1-expressing tumor xenografts in nude mice, including non-small cell lung cancer and pancreas, prostate, and colon cancers. As v1.10 did not react with mouse TM4SF1, it could not target the mouse tumor vasculature. Therefore, we generated a surrogate antimouse TM4SF1 antibody, 2A7A, and conjugated it to LP2. At 3 mpk, 2A7A-LP2 regressed several tumor xenografts without noticeable toxicity. Combination therapy with v1.10-LP2 and 2A7A-LP2 together was more effective than either ADC alone. These data provide proof-of-concept that TM4SF1-targeting ADCs have potential as anticancer agents with dual action against tumor cells and the tumor vasculature. Such agents could offer exceptional therapeutic value and warrant further investigation.
Inositol-specific PLCs comprise a family of enzymes that utilize phosphoinositide substrates, e.g., PIP(2), to generate intracellular second messengers for the regulation of cellular responses. In the past, monitoring this reaction has been difficult due to the need for radiolabeled substrates, separation of the reaction products by organic-phase extraction, and finally radiometric measurements of the segregated products. In this report, we have studied the enzymatic characteristics of two novel PLCs that were derived from functional genomic analyses using a phospholipid-modified solid scintillating support. This method allows for the hydrophobic capture of the [(3)H]phosphoinositide substrate on a well defined scintillation surface and the homogenous measurement of the enzymatic hydrolysis of the substrate by proximity effects. Our results show that the assay format is robust and well suited for this class of lipid-metabolizing enzymes.
Extra domain B splice variant of fibronectin (EDB+FN) is an extracellular matrix protein (ECM) deposited by tumor-associated fibroblasts, and is associated with tumor growth, angiogenesis, and invasion. We hypothesized that EDB+FN is a safe and abundant target for therapeutic intervention with an antibody–drug conjugate (ADC). We describe the generation, pharmacology, mechanism of action, and safety profile of an ADC specific for EDB+FN (EDB-ADC). EDB+FN is broadly expressed in the stroma of pancreatic, non–small cell lung (NSCLC), breast, ovarian, head and neck cancers, whereas restricted in normal tissues. In patient-derived xenograft (PDX), cell-line xenograft (CLX), and mouse syngeneic tumor models, EDB-ADC, conjugated to auristatin Aur0101 through site-specific technology, demonstrated potent antitumor growth inhibition. Increased phospho-histone H3, a pharmacodynamic biomarker of response, was observed in tumor cells distal to the target site of tumor ECM after EDB-ADC treatment. EDB-ADC potentiated infiltration of immune cells, including CD3+ T lymphocytes into the tumor, providing rationale for the combination of EDB-ADC with immune checkpoint therapy. EDB-ADC and anti-PD-L1 combination in a syngeneic breast tumor model led to enhanced antitumor activity with sustained tumor regressions. In nonclinical safety studies in nonhuman primates, EDB-ADC had a well-tolerated safety profile without signs of either on-target toxicity or the off-target effects typically observed with ADCs that are conjugated through conventional conjugation methods. These data highlight the potential for EDB-ADC to specifically target the tumor microenvironment, provide robust therapeutic benefits against multiple tumor types, and enhance activity antitumor in combination with checkpoint blockade.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.