One third of the Indian babies are of low birth weight (<2.5 kg), and this is attributed to maternal undernutrition. We therefore examined the relationship between maternal nutrition and birth size in a prospective study of 797 rural Indian women, focusing on macronutrient intakes, dietary quality and micronutrient status. Maternal intakes (24-h recall and food frequency questionnaire) and erythrocyte folate, serum ferritin and vitamin C concentrations were measured at 18 +/- 2 and 28 +/- 2 wk gestation. Mothers were short (151.9 +/- 5.1 cm) and underweight (41.7 +/- 5.1 kg) and had low energy and protein intakes at 18 wk (7.4 +/- 2.1 MJ and 45.4 +/- 14.1 g) and 28 wk (7.0 +/- 2.0 MJ and 43.5 +/- 13.5 g) of gestation. Mean birth weight and length of term babies were also low (2665 +/- 358 g and 47.8 +/- 2.0 cm, respectively). Energy and protein intakes were not associated with birth size, but higher fat intake at wk 18 was associated with neonatal length (P < 0.001), birth weight (P < 0.05) and triceps skinfold thickness (P < 0.05) when adjusted for sex, parity and gestation. However, birth size was strongly associated with the consumption of milk at wk 18 (P < 0.05) and of green leafy vegetables (P < 0.001) and fruits (P < 0.01) at wk 28 of gestation even after adjustment for potentially confounding variables. Erythrocyte folate at 28 wk gestation was positively associated with birth weight (P < 0.001). The lack of association between size at birth and maternal energy and protein intake but strong associations with folate status and with intakes of foods rich in micronutrients suggest that micronutrients may be important limiting factors for fetal growth in this undernourished community.
Brain-derived neurotrophic factor (BDNF), which plays an important role in neurodevelopmental plasticity and cognitive performance, has been implicated in neuropsychopathology of schizophrenia. We examined the levels of both cerebrospinal fluid (CSF) and plasma BDNF concomitantly in drug-naive first-episode psychotic (FEP) subjects with ELISA to determine if these levels were different from control values and if any correlation exists between CSF and plasma BDNF levels. A significant reduction in BDNF protein levels was observed in both plasma and CSF of FEP subjects compared to controls. BDNF levels showed significant negative correlation with the scores of baseline PANSS positive symptom subscales. In addition, there was a significant positive correlation between plasma and CSF BDNF levels in FEP subjects. The parallel changes in BDNF levels in plasma and CSF indicate that plasma BDNF levels reflect the brain changes in BDNF levels in schizophrenia.
Potential adverse effects of excess maternal folic acid supplementation on a vegetarian population deficient in vitamin B12 are poorly understood. We have previously shown in a rat model that maternal folic acid supplementation at marginal protein levels reduces brain omega-3 fatty acid levels in the adult offspring. We have also reported that reduced docosahexaenoic acid (DHA) levels may result in diversion of methyl groups towards DNA in the one carbon metabolic pathway ultimately resulting in DNA methylation. This study was designed to examine the effect of normal and excess folic acid in the absence and presence of vitamin B12 deficiency on global methylation patterns in the placenta. Further, the effect of maternal omega 3 fatty acid supplementation on the above vitamin B12 deficient diets was also examined. Our results suggest maternal folic acid supplementation in the absence of vitamin B12 lowers plasma and placental DHA levels (p<0.05) and reduces global DNA methylation levels (p<0.05). When this group was supplemented with omega 3 fatty acids there was an increase in placental DHA levels and subsequently DNA methylation levels revert back to the levels of the control group. Our results suggest for the first time that DHA plays an important role in one carbon metabolism thereby influencing global DNA methylation in the placenta.
Maternal nutrition is an important determinant of one-carbon metabolism that lies at the heart of intrauterine epigenetic programming. Exchange of nutrients and other vital molecules between the mother and fetus takes place across the placenta and hence may play direct role in fetal programming. Pre-eclampsia (PE) originates in the placenta and altered maternal nutrition may influence epigenetic patterns in the placenta, thereby affecting birth outcome. In the present study, we investigated the global DNA methylation levels in placentas of pre-eclampsia women (i.e., women delivering at term and those delivering preterm) and studied their associations with maternal blood pressure and birth outcome. Increased homocysteine and global DNA methylation levels were seen in the pre-eclampsia group (term and preterm PE) when compared with the normotensive group (p < 0.05). A positive association between global DNA methylation and systolic (p < 0.01) and diastolic (p < 0.05) blood pressure was seen in the term pre-eclampsia group, whereas there was no association with birth outcome. The study for the first time provides evidence for altered global DNA methylation patterns in pre-eclampsia placentas and its association with blood pressure. It is possible that increased homocysteine levels may be related to increased methylation in pre-eclampsia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.