Tau protein neurofibrillary tangles are closely linked to neuronal/synaptic loss and cognitive decline in Alzheimer’s disease and related dementias. Our knowledge of the pattern of neurofibrillary tangle progression in the human brain, critical to the development of imaging biomarkers and interpretation of in vivo imaging studies in Alzheimer’s disease, is based on conventional two-dimensional histology studies that only sample the brain sparsely. To address this limitation, ex vivo MRI and dense serial histological imaging in 18 human medial temporal lobe specimens (age 75.3 ± 11.4 years, 45 to 93) were used to construct three-dimensional quantitative maps of neurofibrillary tangle burden in the medial temporal lobe at individual and group levels. Group-level maps were obtained in the space of an in vivo brain template, and neurofibrillary tangle was measured in specific anatomical regions defined in this template. Three-dimensional maps of neurofibrillary tangle burden reveal significant variation along the anterior-posterior axis. While early neurofibrillary tangle pathology is thought to be confined to the transentorhinal region, we find similar levels of burden in this region and other medial temporal lobe subregions, including amygdala, temporopolar cortex, and subiculum/cornu Ammonis 1 hippocampal subfields. Overall, the three-dimensional maps of neurofibrillary tangle burden presented here provide more complete information about the distribution of this neurodegenerative pathology in the region of the cortex where it first emerges in Alzheimer’s disease, and may help inform the field about the patterns of pathology spread, as well as support development and validation of neuroimaging biomarkers.
What are the neural mechanisms of skill acquisition? Many studies find that long-term practice is associated with a functional reorganization of cortical neural activity. However, the link between these changes in neural activity and the behavioral improvements that occur is not well understood, especially for long-term learning that takes place over several weeks. To probe this link in detail, we leveraged a brain-computer interface (BCI) paradigm in which rhesus monkeys learned to master nonintuitive mappings between neural spiking in primary motor cortex and computer cursor movement. Critically, these BCI mappings were designed to disambiguate several different possible types of neural reorganization. We found that during the initial phase of learning, lasting minutes to hours, rapid changes in neural activity common to all neurons led to a fast suppression of motor error. In parallel, local changes to individual neurons gradually accrued over several weeks of training. This slower timescale cortical reorganization persisted long after the movement errors had decreased to asymptote and was associated with more efficient control of movement. We conclude that long-term practice evokes two distinct neural reorganization processes with vastly different timescales, leading to different aspects of improvement in motor behavior. NEW & NOTEWORTHY We leveraged a brain-computer interface learning paradigm to track the neural reorganization occurring throughout the full time course of motor skill learning lasting several weeks. We report on two distinct types of neural reorganization that mirror distinct phases of behavioral improvement: a fast phase, in which global reorganization of neural recruitment leads to a quick suppression of motor error, and a slow phase, in which local changes in individual tuning lead to improvements in movement efficiency.
Tau neurofibrillary tangle (NFT) pathology in the medial temporal lobe (MTL) is closely linked to neurodegeneration, and is the early pathological change associated with Alzheimer’s disease (AD). To elucidate patterns of structural change in the MTL specifically associated with tau pathology, we compared high-resolution ex vivo MRI scans of human postmortem MTL specimens with histology-based pathological assessments of the MTL. MTL specimens were obtained from twenty-nine brain donors, including patients with AD, other dementias, and individuals with no known history of neurological disease. Ex vivo MRI scans were combined using a customized groupwise diffeomorphic registration approach to construct a 3D probabilistic atlas that captures the anatomical variability of the MTL. Using serial histology imaging in eleven specimens, we labelled the MTL subregions in the atlas based on cytoarchitecture. Leveraging the atlas and neuropathological ratings of tau and TAR DNA-binding protein 43 (TDP-43) pathology severity, morphometric analysis was performed to correlate regional MTL thickness with the severity of tau pathology, after correcting for age and TDP-43 pathology. We found significant correlations between tau pathology and thickness in the entorhinal cortex (ERC) and stratum radiatum lacunosum moleculare (SRLM). When focusing on cases with low levels of TDP-43 pathology, we found strong associations between tau pathology and thickness in the ERC, SRLM and the subiculum/cornu ammonis 1 (CA1) subfields of the hippocampus, consistent with early Braak stages.
Recently, numerous context‐aware approaches are established to provide physiological information regarding the wellness and healthcare of each individual. While monitoring the health condition of the patient there occur delays in transferring data to the cloud. So to overcome such types of delays, numerous IoT sensors are developed to monitor, track, and sense the activities of the elder persons. This paper proposes four‐module architecture comprises of IoT module (IoT‐M), data pre‐processing module (DP‐M), context‐aware module (CA‐M) as well as decision‐making module (DM‐M) for storing and processing numerous cumulative sensor data. Here, an IoT comprises a concrete or substantial hardware ecological unit, that is, sensors and actuators. On the other hand, the context‐aware computational approach comprises of insubstantial software ecological unit in understanding and processing the context directly into an accomplishment through various IoT devices. The initial module or the IoT‐M comprises of sensors whereas in the DP‐M phase includes data collection phase, data storage phase, and data redundancy phase. The third phase or the CA‐M comprises two different types of layers namely fog layer, cloud layer. In addition to this, a context‐aware learning phase is also enumerated. In the final phase or the DM‐P phase, the feature extraction and classification is done by Back‐Propagation Neural Network along with the Adaptive grasshopper optimization algorithm so as to obtain a best optimal solution. Thus, an alarm or a notification is sent to the medical practitioner regarding the health condition of the patient with very less response time, high accuracy, and a high scalability rate. The evaluation results and discussions are made by comparing our proposed approach with several other approaches and the evaluation results reveal that the proposed framework provides better results with high accuracy, scalability, network latency, and low response time.
The medial temporal lobe (MTL) is a nidus for neurodegenerative pathologies and therefore an important region in which to study polypathology. We investigated associations between neurodegenerative pathologies and the thickness of different MTL subregions measured using high-resolution post-mortem MRI. Tau, TAR DNA-binding protein 43 (TDP-43), amyloid-β and α-synuclein pathology were rated on a scale of 0 (absent)—3 (severe) in the hippocampus and entorhinal cortex (ERC) of 58 individuals with and without neurodegenerative diseases (median age 75.0 years, 60.3% male). Thickness measurements in ERC, Brodmann Area (BA) 35 and 36, parahippocampal cortex, subiculum, cornu ammonis (CA)1 and the stratum radiatum lacunosum moleculare (SRLM) were derived from 0.2 × 0.2 × 0.2 mm3 post-mortem MRI scans of excised MTL specimens from the contralateral hemisphere using a semi-automated approach. Spearman’s rank correlations were performed between neurodegenerative pathologies and thickness, correcting for age, sex and hemisphere, including all four proteinopathies in the model. We found significant associations of (1) TDP-43 with thickness in all subregions (r = − 0.27 to r = − 0.46), and (2) tau with BA35 (r = − 0.31) and SRLM thickness (r = − 0.33). In amyloid-β and TDP-43 negative cases, we found strong significant associations of tau with ERC (r = − 0.40), BA35 (r = − 0.55), subiculum (r = − 0.42) and CA1 thickness (r = − 0.47). This unique dataset shows widespread MTL atrophy in relation to TDP-43 pathology and atrophy in regions affected early in Braak stageing and tau pathology. Moreover, the strong association of tau with thickness in early Braak regions in the absence of amyloid-β suggests a role of Primary Age-Related Tauopathy in neurodegeneration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.