Hydrogen sulfide (H 2 S), a messenger molecule generated by cystathionine γ-lyase, acts as a physiologic vasorelaxant. Mechanisms whereby H 2 S signals have been elusive. We now show that H 2 S physiologically modifies cysteines in a large number of proteins by S-sulfhydration. About 10 to 25% of many liver proteins, including actin, tubulin, and glyceraldehyde-3-phosphate dehydrogenase (GAPDH), are sulfhydrated under physiological conditions. Sulfhydration augments GAPDH activity and enhances actin polymerization. Sulfhydration thus appears to be a physiologic posttranslational modification for proteins.
Rationale
Nitric oxide, the classic endothelial derived relaxing factor (EDRF), acts via cyclic GMP and calcium without notably affecting membrane potential. A major component of EDRF activity derives from hyperpolarization and is termed endothelial derived hyperpolarizing factor (EDHF). Hydrogen sulfide (H2S) is a prominent EDRF, since mice lacking its biosynthetic enzyme, cystathionine γ-lyase (CSE), display pronounced hypertension with deficient vasorelaxant responses to acetylcholine.
Objective
The purpose of this study is to determine if H2S is a major physiologic EDHF.
Methods and Results
We now show that H2S is a major EDHF, as in blood vessels of CSE deleted mice hyperpolarization is virtually abolished. H2S acts by covalently modifying (sulfhydrating) the ATP-sensitive potassium channel, as mutating the site of sulfhydration prevents H2S-elicited hyperpolarization. The endothelial intermediate conductance (IKCa) and small conductance (SKCa) potassium channels mediate in part the effects of H2S, as selective IKCa and SKCa channel inhibitors, charybdotoxin and apamin, inhibit glibenclamide insensitive H2S induced vasorelaxation.
Conclusions
H2S is a major EDHF that causes vascular endothelial and smooth muscle cell hyperpolarization and vasorelaxation by activating the ATP-sensitive, intermediate conductance and small conductance potassium channels through cysteine S-sulfhydration. As EDHF activity is a principal determinant of vasorelaxation in numerous vascular beds, drugs influencing H2S biosynthesis offer therapeutic potential.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.